IDL Reference
Gulide

IDL Version 6.3

April 2006 Edition
Copyright © RSI
All Rights Reserved

Restricted Rights Notice

The IDL®, ION Scri pt™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RS reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, asto any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantahility, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of I TT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ isatrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ s atrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDFS5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1

OVErview Of IDL SYNTAX ..euuuriuiiiiiiieeee e eeeeeeeietiieies s e e e e e e eeeeeeeeaeeen 33
IS | = S 34
Running the EXamMpPle COOEcccvcuviieiee ettt 40

Part I: IDL Command Reference

Chapter 2

Do) o 0] 0] 1 =T T KSR 43
CCOMPILE ettt et et e e et e e e et e e e e ab e e e e e nbee e e enreeeeenees 44
CCONTINUE e e e et e e et e e e e aabee e s ennte e e e nreeeennreeeeannees 45
] 1 USSR 46
FULL_RESET_SESSIONctiiiiiiiiiieriiteitie sttt st sre s nre e e e 47
S 48
L 16 USSR 49
S o IS S 1 1 S 50

IDL Reference Guide 3

RETURN ettt e e s e s bbb e e e e e e seabbbe e e e e s sesbbreeeeeseasabeeeeessesnssrens 53
A 1=V AY 54
RUN et e e e e e e e e e e e et e e e e e e e s st b aeeeee e s abbaeeeeeesasbabeeeeeseensrrees 56
R 1 58
RS = R 60
S I = @ AV = 61
T RACE e e e e e r e e e e e e aabrreeaans 62
Chapter 3

Procedures and FUNCLIONS ..o 63
N L0 == N I =T 64
A = 1 T 66
AN O 1 T 68
ADAPT _HIST _EQUALL .t tee et ettt te e st e et e eneeeneeeneeens 70
A 0 L T 73
AN 0 L1 1 O 75
J YL@ = = TR 77
F AN AN AL I N I = 81
F Y o o U1 =] T 83
APP_USER _DIR_QUERY oeeeeeeeeeeeeeeeeeeeeeeeeee e e ee e es e es s nee e e e snesnes 93
F N LT L=t = N T 08
N Y A = 1§ S 100
ARRAY INDICES ..ottt es st sttt et e st tebesssnassaesennanas 102
F AN (O 11T 106
ASCH _TEMPLATE .ottt sttt ss s sttt ettt e sttt sn st besnanas 108
AN 117
AN S L 119
AN I 122
AAXIES ettt et ettt ettt ettt et et et et et e te st et et ate e see st etere et ete st anas 126
[G T 134
BEGIN...END .ottt sttt ettt sttt e e se st sttt st st e st stansseanees 138
] s ! 140
]S I [T 143
] ! Y 148
]S = 22T 151
] = 1A 154

Contents IDL Reference Guide

BILINEAR oottt ettt sttt st b be e s be e sbeesbe e be et e enbeesreebesnnes 156
BIN DATE ettt ettt s st et ae e s b s he e e e e e sbesbeeaeestestesbeennentestens 159
BINARY _TEMPLATE ..ottt st e ettt ae st sreennennenne s 161
1IN T N 170
BINOMIAL oottt sttt e st s be e s be e be e sbeebeenbeenbeeabeensesnnesnnesares 172
BT S e et he b e b e he et et e beeheeateatesbesreeneententea 174
BIT _POPULATION ..ottt sttt sttt st s e et se e e e s besne st e saesresreennensenneas 176
BLAS AXPY ettt e e et e s be e he e e teeresbeeaeenrentea 178
=TI S L | SRR 182
BOX_CURSOR ...ttt ettt st sttt a et s e et b e s be e e stesbesbeennentesteas 184
BREAK oottt h e b e b e e be e be e be e be e beeabeeareereerenars 186
[T AN L = O 1 1N [187
BROYDEN .ttt ettt ettt sttt e st e s beesbe e sbeesbeesbeebeenbeenbeesreeabesnres 190
O I = AT @ I 193
BYTARR ettt sttt s s b e e b e et e e e be e be e be e b e et e eareereennenaras 195
2 I 197
BYTEORDERoootieti ettt sttt sttt sttt sb e e be et e e beebeenbeeabeeaseennesnnesanes 199
0 1S O 204
O O o = AN S 207
L7 5 7N 210
CALENDAR ettt ettt et st sbe e s b e sbeesbeeabeesbeesbaesbeebeenbeenrenans 214
CALL _EXTERNAL .ottt sttt st et st e s ne b neanas 215
CALL_FUNCTION oottt sttt st sttt sbe s snaenesbesneenaennenns 226
CALL _METHOD ...ttt ettt sttt st b et st eae et st neennesneanas 228
CALL _PROCEDUREcctitieieteste ettt e ettt ste st st anne e 230
L7 N 2 232
A SE ..t a e e e he e heeshe e be e beesbe e e beenbe e beebeereeans 235
L7 O 237
O LSRR 240
CDF ROULINES ...ttt ettt ettt et e e st e et e et e e eteeeebeeesbeeesneeesnteesnreeennens 243
L1 = I SRRSO 244
CHEBY SHEV ...ttt ettt ettt ettt ettt s st e s esbessbe s s be s sbe s sbeesbeenbeesteenteeans 246
(O 1O S Y, I = S 247
CHISQR _CVF ...ttt ettt st bbb e aesae et st e e nee st anas 253
(O 1S I | S 255
(01 [T 257

IDL Reference Guide Contents

(@50 <o OO OONY 259
CINDGEN oo eeeeeeeseeeeseeeeeseesseesessesssessssssessesssesssseseessesssssesesseessssesssesessssesssessessssees 261
(01! = N OO 263
(010 1= =IO 265
CLUST WTS eoooeeeeeeeeeeeeeeeeeesesesesseeessseesseeeseessssssseesesseessseeesesssssssesssssessseeeeseessessenes 267
CLUSTER ovvvoooeeeeeeeeeseeesseesesesssessessesssssssssssssesssessssessessesssssessssssssssesssssessssesssessessssees 270
CLUSTER _TREE ...ooocooeeeeeeeeoesseeseeeeesesssessseesssessssssseessssesssseaesesssssssesssssessseseesesssessenes 273
(Y 40 NAVA == LY 279
(0] =30 N\V/ = =3 LSOO 282
(020] Mo =3 o U NI 284
COLORMAP _APPLICABLE ..oveveoeoeeeeeeeeeeeseeeeseeeeesssseessseesesssssssessssssessseoeeseessessenes 290
(0101 | =/ I SO 292
COMMAND _LINE_ARGS ...cooevveeeeeeseeeeeeeeessesessseesssseessseessssssssssessssssessseeeesesssessenes 295
(010)1Y 1Y L) N TSSO 297
(©20)Y 1= T = o) =4 LSOO 301
(010 Y 1= T =3 OO 306
(00 Y 1= W= N == SO 309
COMPLEXROUND .cooreveveeeeseeseeseeesssssssseesesssssssssessssessssssssssssssssssssssesssesesesssessenes 311
COMPUTE_MESH_NORMALSocoooreereeeeeesseeseeeeessssessseeesssssesssseessssesssesesesseessene 313
(010)] XSS 314
(010) N[=] o OO 316
(00) N TS 319
CONSTRAINED_MIN +.oevoveeeeeeeeeeeeeeeseeeeeeeeeseesssseeeeesseessseeesssesesssesssssessseeeeseessessenes 321
(010 N1 1N TU =SSO 328
(©10) N1 1018 =TSO 329
(0] N1VA=I=a s (00| Y 359
(010) N 14 ER OSSO 363
(01010) {0722 10 < TS 373
(010 = 2 KU | N[O 375
CORRELATE ooooevvveeeeeeeeseseesesseessssessssssssssssssssssssssssessessssssssssssssssssssssssssssessessssssenes 378
(00 LTSS 380
(01015 [F SO 382
(0= U OSSOSO 384
(012N 1= =SSO 389
CREATE_CURSOR ...ooueveveeeeeeeeseeeesssssessseeesssssssssseessssesssseassesssssssssssssessseoeesesssessenes 391
CREATE_STRUCT ooooreveeeeoeseesesseeessssessssesesssssssssessssessssssssssssssssssssssesssesesesssessenes 394

Contents IDL Reference Guide

CREATE _VIEW ..ottt ettt st st st st e e nnn 397
L0155 401
CRVLENGTH ..ottt sttt sbe e s b e st e e sbe e sbeesbeebeebeenreeans 402
CT _LUMINANC E ..ottt ettt sttt st et b eaeene et st sneennesneanas 404
(O I T I =S 1 S 406
(10 =S @ | 409
CURVEFIT ettt ettt ettt et st sttt st esae e sbe e e beesbeesaeesaeesbeenbeesbeesns 414
CV _COORD ...ttt ettt ettt ettt e e et e b e et e b e s besbeeaeenbesbesaesneetesbesaeensasearis 419
CVTTOBM ..ottt ettt et et st et e e s aaesatesbeeereesbeesaeesaeesbeenbeesbeeses 422
CW _ANIMATE ettt ettt st b et s be b snee b e s besaeennasrearas 424
CW_ANIMATE _GETP .ottt st sttt 430
CW_ANIMATE LOAD ..ottt sttt sttt s et st neanas 432
CW_ANIMATE _RUN ..ottt sttt st st st e e nns 435
CW _ARCBALL ettt ettt ettt bbb e aeene e b s beeneennesneeras 437
CW _BGROUP ...ttt sttt sttt st s ete st e neennesnenras 443
CW _CLR_INDEX ittt ettt sttt sttt b et b eaeeneenesbesneennasnearas 450
CW _COLORSEL ..ottt sttt ettt ettt st st et te st sre e ese st sneeaennesrenns 454
CW _DEFROI ...ttt ettt ettt et te st b e aa e be s be s aeeaeebesbesneennesreanas 458
L@ = 0 TSP 463
CW _FILESEL ..ttt ettt ettt ettt st s besaesne et sbesneennesneanas 469
L@ RSP 475
CW _FSLIDER ...ttt ettt ettt sttt st st et b e aesnee b e st e neennesreanas 484
CW_LIGHT _EDITOR ...oos ettt ettt st sttt enenns 490
CW _LIGHT _EDITOR _GET ...utoitiiticeeteste ettt sttt st e ne st st nesne b s 496
CW_LIGHT _EDITOR _SET .ooeciii ettt ste sttt ne st nnennas 499
CW _ORIENT ettt ettt ettt st e e be st e e ae et e sbesbeeaeenbesbesaeeneestesbesneennasesres 502
CW_PALETTE EDITOR ..ottt sttt st s 506
CW _PALETTE EDITOR _GET ..oioicicee ettt sttt s ne st 514
CW_PALETTE EDITOR_SET ..ottt sttt s 515
CW _PDIMENU ..ottt ettt st st et b b s nee b e st e s neennesneanas 516
CW_RGBSLIDER ..ottt ettt sttt st st st nnennennn 525
CW _TIMPL ettt ettt e st e s besae e besbesaeeaeebesbesneennarearen 530
(@1 74 6 L RSP 533
DataMIiNEr ROULINESooeiveeeiee e ctee et eetee e eeeeetee et e e eteeesteesbeesaseesstessnteesbesebeeenseeans 539
DBLARR oottt st s b e be e be e be e be e beeabeeareereenrenares 540
[1O 1 NN 1 542

IDL Reference Guide Contents

DCOMPLEX ..ot s 544
DCOMPLEXARR ...t 547
DEFINE_KEY o s 549
DEFINE_MSGBLEK ...t 559
DEFINE_MSGBLK_FROM_FILE ..o 562
DEFROI ... e e nre s 567
DEFSY SV e s 570
DELV AR et r e nre s 572
DENDRO_PLOT ..o s 573
DENDROGRAM ..ottt n e enennenne s 578
DERIV e s 581
DERIVSIG ...t nre s 583
DETERM ..o e s 585
DEVICE .. e e e nne s 587
DEFPMIN e e 592
DIAG_MATRIEX et st n e nnenre s 596
DIALOG_MESSAGEooiiiiiiieirini s 599
DIALOG_PICKFILE ..o 603
DIALOG_PRINTERSETUPR ...ttt s 611
DIALOG_PRINTUJIOBcoeiitiitiitiree et sne e e e enes 613
DIALOG_READ_IMAGE ... s 615
DIALOG_WRITE_IMAGE ... s 620
DIGITAL_FILTER oottt e s 624
DI ATE e e R e e n e r e n e nre s 626
DINDGEN ..o e s 632
DISSOLVE ..ottt r e e n e r e e nnenre s 634
[S TP PSR 636
DISTANCE_MEASURE ..ot 638
DLM_LOAD .ottt s e 643
DLM_REGISTER ..ottt 644
DOC_LIBRARY ...ttt e 645
DOUBLE ... e 648
DRAW_ROI ..o s 650
EFONT e e nre s 653
EIGENQL ..ot 655
EIGENVEC ... e e 658

Contents IDL Reference Guide

ELIMHES ...ttt ettt sttt sttt nean 661
1 OSSPSR 663
ENABLE_SY SRTN ..ttt ettt see s senessenenens 664
O USRS 666
EOS * ROULINES ..vicviceieiiiti ettt ee ettt te st ereesaeste e e s eaestesaesnaesaesresreennensesnens 668
ERASE ..ottt ae ettt ne et ne st R e e ne e nnenenaan 669
R ettt e ARt b et Re e Re e be e ntenenean 671
ERFC oottt ettt ettt e Rt Rt et e et e ne e e ne e ne e enenentenennan 673
ERFCX ettt sttt ettt e et R ettt bt e be et ne et e nean 675
ERODE ...ttt a sttt ne e e ne e nenenaenennan 677
[I ST SRSSTN 682
EXECUTE ..ottt ettt et na e s e ene s esenenaenennas 684
ST SRSSRSN 686
TSR 688
EXPAND ..ottt ettt ettt e et b e na e e 690
EXPAND _PATH ittt sttt st ne e nnan 692
I N ST 698
EXTRAC oottt ettt et b et et e et e ne e e e neseene e e nenentenennan 701
EXTRACT _SLICE ..ottt st 704
e O TR STSR 709
[0 ST 711
A O 1@ = 2 RS 713
o OSSPSR 715
FILE_BASENAME ...ttt sa e s sa s naennnnes 721
FILE_CHMOD ..ottt ettt ettt se st neas 724
FILE _COPY ettt e ettt a s aese e b e e s tesesaeneseese e enanensenennns 729
FILE DELETE .ooiieiieeerie ettt ettt ettt 733
FILE_DIRNAME ...ttt ettt a e a e se e nnen 735
FILE_EXPAND _PATH .ottt 738
FILE _INFO oottt ettt s se s e st ne s ne e senennan 740
FILE _LINES ..ooooieestese ettt se e s b et e e 744
FILE _LINK oottt e ettt et st naese s sse e saenessesensnsenennas 747
FILE_IMKDIR coeeotiiecteieieesie ettt be et ne e 750
I Y@) RS SRS 751
FILE POLL_INPUT oottt sse e 754
FILE_READLINK .ottt ettt sae e saese s esenessenennns 757

IDL Reference Guide Contents

10

FILE_SAME oo eeeeeeeeessesseeeeseessssessessssseessssessessessssssessessessesesssssessssssssesessesseseeees 759
ST =T Vo = oS 762
FILE_TEST wovooreeeeeeeseeseeeeesssessssssssessssesssesssssesssssessessssssssssssessesssssessssssssssssesesessesseseeees 780
FILE WHICH ©ooooeeeeeeveeeeee e eeeeseeesesessessssseessssessesssesessesessesssssesssesssssessssssesensseesseeeeees 784
=TI = 2T TS 786
FINDGEN ovovooooeeeeeeeeeeeeseseseseeesssssssssssssessseeesssssessssssssssessssessssessssssssessssssesesessssseeeeses 788
FINITE oovvvveeeeeroeseseessesseeeesssssssssssesssssssesssessssseessssessessssessssessssseesessesssssesssssseneeesessseseeees 790
FIX e eeeeeeeessees e esssesesss e sttt s e s 794
FLICK orvvvvveeeeereseseessesseesessssssssssssesssesesssesssssesssssesseessssssssssssssssssessesssssessssssesesessssseseeees 797
FLOAT oovvvveeeeeseeseseeeesessesssssseseseeesssssssssssessssseessssesessssseseseesesssseesseessssessssssenesnseesseeeeees 798
FLOOR ovvvveeeeeeeseseeseesseeeeesssesssseesssssssessessssseessssesessssssssssessessessesesssssesssssseseeesssssesseees 800
=0 iV OO 802
FLTARR covvooooereseseessesseeeeessssssssesssessssessesssssssssssessessessssssssssssesssssesssssesssssseseeesesssesseses 804
FLUSH ovvvvveeeeeseseseeeeeessesesssseseseesssessssssssessseeesssssssesssssssseesesssssessesssssessssssenesesesssseeeees 806
=70 SO 807
FORMAT AXIS VALUES w.eeeeveoeeeoee e eeeseeseesesssssssesessesssssessesssssessssssssesssesseseeees 808
= VN7 (oY = U] Nox) N 810
FREE. LUN ooooooooeeeeeeeeeeeeessseesseeeessesssessssssssseesssssssesssssssssessssssssssssesssssessssssesesssessseeeeees 812
FSTAT oovvvveeeeeeeeseseeseessseeessssesssesesssssssesseessseeesssseseees s s seesesseseeeeeesseesssssseneeeseesseseeees 814
FULSTR ovvvvoeeeooeseseeeeesssessssssessseessssssssssssesssseesssssssesssssssssessssssssessesssssesssssssnensseessseeeees 818
=0 N o LSOO 820
=] o o) N OO 822
FV_TEST covoooeereeeeeeeseesseeeeeesssssssessssssssesesesssssesssssessessessssssesssssessessesssssesssssseneeesesssesseees 823
FX_ROOT ooovoroeeeeeeeeeesseeessessseeessssesssssssessssesessssssssssesssssesssssssssessssssssessssssemenessssseeeeees 825
=710 @ L KT 828
GAMMOA oo eeeeeeeeeee e eeseeseese e esess e e s ses e e eesessssenene e seeeeees 831
T Y 17N o oS 833
UL IN 02V =IO 835
TN IS I = o) = 837
NI/ = i SO 839
LTI = i SO 843
GAUSSINT oooooeeeeeeeeeeeeeseesseseeesessessesseseseeeeessesseesesseessssessssesseeesseeesseessssssenesessesseeeeees 848
GET_DRIVE_LIST oovveeoeeeeeeeeeeseeeeeeessesssssssessssssessesssssssesssssssesessssssssssssssssesesessesseseeees 850
GET_KBRD <.ooeeeeeeeveeeeeeseesseseeesessessesssessssesessessessessssssssessssessssesssesssssessssssesesessssseeeeees 852
GET_LUN eooroeeeeeeeeeeeeoeseesse e sssseeeesessss e ssessessessessseessssssseseessessssesssssssseesssessesesees 857
IS o= = NI 4 = 859

Contents IDL Reference Guide

GETENV ettt b e sttt b b ettt b e e 861
€1 1 LTSRS 864
GRID_INPUT ottt st sttt st sttt n e 865
(€1 N I = TSRS 870
GRIDS ..ttt b e b e e bbbt be b e e 874
GRIDDATA ettt sttt et et s te st eneeseseesteaeseeseseeseeneenensensanannens 877
GS ITER ettt bbbt b e et b s 902
[= TSP 905
[T = 1V SO P ST PRPRPSTR 911
[LT L0 0 111 913
HS5 _BROWSER ...ttt sttt sttt 914
HANNING ottt sttt ese et e e e e e sessenteseeneenessenseneenens 919
HDF_* ROULINESoveceieiictice ettt be sttt e e e e e s besneenaesaestesreennensesneas 921
HDF_BROWSER ...ttt ettt st s sseseenes e ssessesenens 922
HDF _READ ..ottt sttt bbbt a e 928
HEAP _FREEooteeeiee sttt ettt sttt ese st teneeneenessensanennens 931
HEAP _GC ...ttt sttt sttt b bbbt n e 934
HEAP _NOSAVE ...ttt ettt sttt sttt see e e nessensenens 936
HEAP _SAVE ...ttt sttt st 937
HELP ettt sttt ettt e et se s et seeseesente e eneenenrensenennens 939
HILBERT .ttt sttt sttt sttt sttt b e 948
[1S 2 5 SRR 950
HIST _EQUALL .ttt ettt st 952
HISTOGRAM ..ottt sttt st e s e e sestenteneeneenensensaneenens 955
HL S bbb bbb b ettt e e 961
[(] TSP 963
[[SO PRTRVPRR 972
[15U 974
IBET A ettt b e e b bRt b bRt ae st e ene 976
@@ N 1 1 1 980
IDENTITY oottt ettt bttt sttt bt 1006
IDL_Container ODJECE ClaSSceccieecieeiieeieeiie st ser s seesaesree e st s e e sreesre e re e sre e 1008
IDL_VALIDNAME ..ottt 1009
1 0 @ o] o O = 1012
IDLCOM™ ODJECE ClASS ...ocvveeeiiitiiieeste sttt st sae e nrs 1013
IDLEXBR_ASSISTANT oottt s ese s sseneens 1014

IDL Reference Guide Contents

12

IDLF* OBJECE CIESS ...cveevciiireiirieesieeste st 1016
IDLQr* ODJECE CIASSESeeirieeiieieeeriesiesee e seeste st esee e steste e eesteste e eneeeesaesneeneensessesneens 1017
IDLit* OBDJECE ClASSESecvieieiiirieireitsieie st 1018
IDLITSYS_CREATETOOL ..ottt sbe e 1019
IF.. THENLLELSE .ot 1024
IGAMMA bbbt b e h bbbt e b e 1026
ITIMAGE ..ottt bbbt 1029
IMAGE_CONT .ottt sttt sttt b e st eb e e bttt e st e enas 1045
IMAGE_STATISTICS ...ttt 1047
IMAGINARY ettt bbbt sn et e enas 1051
IIMIAP bbbt 1053
INDGEN ...ttt sttt et e b e e bt e et e s b e enas 1079
INT_2D ettt bt e bt r e enas 1082
INT 3D ettt e bbbt b bt b et b Rt e e n e enas 1086
INT_TABULATED ..ottt 1089
INTARR bbbttt bbb b e bt b et e e s b e enas 1092
INTERPOL ..ottt ettt 1094
INTERPOLATE ..ottt ettt sttt 1097
INTERVAL_VOLUME ...ttt 1101
INVERT ettt ettt bbbt b et e et s b e enas 1106
TOCTL ettt b b bt e b e bt n e r e enas 1108
[PLOT ettt h e bbbt R b e b e b e Rt e e e n e enas 1111
TR_FILTER oottt 1132
L SH T bbbt nen e enas 1134
[SOCONTOUR ..ottt ettt en e 1136
[SOSURFACE ...ttt ettt eb e b et sn b e e 1141
ISURFACE ..ottt b et enas 1145
ITCURRENT .ottt ettt b ettt s nn b e enas 1167
ITDELETE ..ottt 1169
ITGETCURRENT ...ttt ettt ettt 1171
ITREGISTER ...ttt 1173
ITRESET ..ottt sttt st b et bbb e e b bt e e nn b e enas 1177
ITRESOLVE ..ottt 1179
IVECTOR ..ottt b e e b ettt sttt ne b e b e b 1181
IVOLUME ..ottt bbbt 1203
JOURNAL ettt sttt e et e bttt e e nn b e e 1227

Contents IDL Reference Guide

JULDAY oeooeoeeeeeeeeeeeeeeseeeeeeseeeeeseeeeesas s ssese s ss e s esss e esessssesesesseessseeeeseseeseees 1229
KEYWORD_SET vvvveeoeeeseeeeeesssesssesessssssssssssssssesssssssasessssssssssssssssssssssesssssssessees 1232
Q{1720 R 1234
KURTOSIS vvvocoeeeeeeeeeeeeesessssesesseesssseesessssssssssesssessssessessesssssssessssssssesssesessssesseseees 1239
KW TEST oveeeeoeeeeeeeeeeeseeeseeeeesssesssssesesssesseessessesessseeesssessesessessesssesaesessessseeesesenes 1241
LBAINDGEN ..voooreeeeeeeeeoeeeesseeesesssesssssesssssesssssssssssessssessasessssssssssssssssssssssesssssseessees 1244
17N 0 [0 1 oY OO 1246
LA_CHOLMPROVEcooeerveeeesseeseeeseesssesssssssssssssssssessssesssssssssssssssssssssssessssssssessees 1249
LA _CHOLSOL eooeevveeeeeeeeeeeeeeesseessseeessssessseeesessssessseeessssessssessssssssssssesssssesssees s 1253
LA _DETERM coooroeeeveeeoeseeeseeeeesssesssssesssssesssssssssssssssssssasesssssssssessssssssssssssesssssseessees 1256
I = ci= N = = o= TH = Y OO 1258
0N == T OO 1264
0N = (1= LY/ = o 1270
LA_ELMHES .ooooreeeveeeoeseeseeeeeesssesssssessssesssssssssssessssessassesssssssssssssssssssssssesssssssessees 1274
LA _GM_LINEAR MODEL ..cooeovvveeeseeeeeeeeeessesesseeessssesseseessssssssssesssssessseesseesees 1277
0N 0 = OO 1280
LA INVERT ooooooeeeeeeeeeeeeeeseeeeesseesssseeeesseesseessessssessseeesssessssesssssesssseseessssesssees s 1283
LA_LEAST_SQUARE_EQUALITY oooreoveeeeemseeeeseeeessssesssssesessssssssssessssessssssessssees 1285
LA _LEAST _SQUARES ...vveeooeeeeeeeeeeesseeesseeeessesessseessssesseseesssssessssesssssesssees s 1288
LA_LINEAR _EQUATION ovoocoreeeeeeeeeseeseseeessssessssseesssessssssssssssssssssssssesssssseessees 1292
LA _LUDC ovoeeeeeeeeeeeeeeeeeeeeeeeeesseesseseeeesseesseesesssesessseeesssessssesssssssssssaesssssessseee s 1295
I U V1= =1] = 1298
LA _LUSOL ovooeeeeeeeeeeeeeeeeeseeeeesssesssseesesseesseeeeessssessseeessssessesessssesssssseessessessseeesessees 1301
LA _SVD eeeeeeeeeeeeeeeeeeesseseeesesssesssessssses s sesssssssseesessssessasesssssesseeesessssseeessessseee e 1304
LA _TRIDC oovoeeoeeeeeeeeeeseeseeseeeeesseeeseseeesessesssseeeesseessssessessesssesssesseesseeeessssessseeessessees 1308
LA_TRIMPROVE ovvveeoeeeeeeeeesssesssssessssesssssessssssesssssssssessssssssssssssssssssssssesssssssessees 1312
0N 1 2T oSO 1316
LA _TRIRED ovooooeeeeeveeeoeseessseesesssesssssesssssssssssessssssssssessasssssssessssssssssssssssssessssssesessees 1319
LA _TRISOL. ovvoceeeeeeeeeeoseeeeeseeeeesssesssseesessessssessessesessseeessssessesesssssssesessesssssessseessessees 1321
LABEL_DATE woooeeeevveeeoeseeeeeeesesssesssssesssssesssssssssssessssssssssesssssssssssssssssesssssssssssssessees 1324
I0X=1 = I == (o) N OO 1334
LADFIT oroeevveeeeeeeeeeseeesseseessssssssssessssssssssssessssessssssssssessasesssssssssesssssssssssesesssssssessees 1337
LAGUERREooereveeeeieeeeeseeeeesssesssseessssessseesesssesessseeessssessssssssssssssessesssssessseesseseees 1340
LEEFILT ooeeeveveeoeeeeeeseeeseseessssssssessesssssesssssssssssssssssessssessasessssssssssssssesssssssesssssseessees 1342
LEGENDRE ...coomeeeveeeeeseeeseeeeesssesssseeessssssssessessssessseeessssessssessssssssssssesssssesssees s 1344
LINBCG ereeevveeeeeeeeeeseeesessessssssssssesssssssssssssssssssssssesssssssasesssssessssssssssssssssessssessessees 1347

IDL Reference Guide Contents

14

LINDGEN ..ottt e e 1350
AN PP P PSPPI 1352
LINKIMAGE ..o 1355
LL_ARC _DISTANCE ...ttt 1359
LIMIFIT e 1361
LIMIGR e r e nre s 1366
LNGAMMA e 1370
LN P T EST et r e sr e r e r e r e e e renrenne s 1372
LOADCT e e 1375
LOCALE_GET .ottt sr e nne s 1378
LOGICAL_AND e s 1379
LOGICAL_OR .ttt sne e sn e sr e r e nne s 1381
LOGICAL_TRUE ...ttt s 1383
LONBAARR ...t sr e nre s 1385
LONARR .o 1387
LONG e e r e nre e 1389
LONGBE ...ttt e 1391
LSODE ..ottt e e nre e 1393
LU_COMPLEX ..o 1398
LUDGC et e n e nr e e re e 1400
LUMPROVE ..o s 1402
LUSOL ettt r e r e n e r e nr e nne e 1405
M_CORRELATE ..ot 1408
MAGCHAR e e r e e e n e e 1411
MAKE_ARRAY e 1414
MAKE DLL ottt sr e r e nenre s 1418
MAP_ZPOINTS ..o e 1424
MAP_CONTINENTS ... 1428
MAP_GRID ..ot e 1434
MAP_IMAGE ...t r e sr e nrenne s 1440
MAP_PATCH e 1445
MAP_PROJ FORWARD ..ottt 1449
MAP_PROJ IMAGE ..o 1455
MAP_PROJ INFO ..o nne s 1461
MAP_PROJ INIT Lot 1464
MAP_PROJ INVERSE ... 1486

Contents IDL Reference Guide

IMAP_SET eooveeeeeeeeeeeeeeeseeesseeeeesssesssseessseeesseessessesess s essesseseseesessssssaeeessessseee s 1488
MATRIX_MULTIPLY ooreveveeooseeeseeeeessesssssssesesssessssssssssesssssssessssssssesssssessssessseseees 1507
MATRIX_POWER ...oooccoreereeeeceeseeseeeeeessssesseeeesssssessseeessssessssesesssssesessesssssessseseseseees 1510
IMAX ovvveoreeeeeeeeeeeeeeeesseeesessessseesseseesssessss e e s ssees e ese s s s s s s e s e eeeesseseeeeesess e e 1512
IMD_TEST oveeeeeeeeeeeeeeseeeeeseeeeeessesssseeesseesseessessesesseeeesessessesesessesssseseeeessessseee s 1516
IMEAN ceecooeeeeeeeeeeeeeeeeeeesesessssessseseesssssesseeseessseessessessesesseseessssessseeesssesssesesesssseeeessees 1518
YT =1 o) = O 1520
IMEDIAN oo eeeeeeeeeeseesssessseseesssssessessssssssssssesessssessasessessesssesssssesesssssesssseseessees 1522
IMEMORY oo eeeeeeeeseeeeeeeeeeeeseeesseeesesesesseessessesessseeesssesses e esesssseeaesessessseee e 1525
IMESH_CLIP ovveoooeeeeveeeoeseeeeseeeeessesssssesssssesssssesssssessssessssessssssssessssssessssssssessssessessees 1529
MESH_DECIMATE .ooooeooeeeeeeeeeeeesseeeeeessessseeeeessesessseeessssessssessssssssssssesssssessseeesessees 1535
IMESH_ISSOLID «eeeevvveerreeeeeeeeeeeseesssssesssssesssssssssssessssesssasessssssssssssssssssessssssssssssessees 1543
IMESH_IMERGE ...o.ovveeeeeeeeeeeeeesseeseeeeessssessseeessssssessseeessssessssessssssssseseessssesssees s 1545
MESH_NUMTRIANGLES .vvvocoreeeveeeeseeeeeseeesesseessssseesssessssssssessssssssssssssesssssseessees 1550
IMESH_OBUJ .ovvecooeeeeeeeeeseeesseeesessseessseeesssssssseesessseessseessssesssssssesssssssseessssessseeesseseees 1551
IMESH_SMOOTH vvvveeereeeeeeeeeosseesssssessssesssssssssssesssssesasessssssssssssssssssesssssessssesssessees 1558
MESH_SURFACEAREA ...ooveccoeeeeeeeeeesseesseeeeessesessseessssessesesessssssssssesssssesssses s 1564
MESH_VALIDATE wovvvoeoreeeeeeeeeoesseessesessssesssssesssssessssessssessssssssssssssssssssssesssssssessees 1566
MESH_VOLUME ..ovveeeeeeeeeeeeeseeeseeeeeesseeesseeeeessssessseessssessssesssssssessseessssessseee s 1568
IMESSAGE .ovvvcooeeeeeveeesesessssesesessesssssesssssessssssssssssssssessasesssssssssesssssessssssssessseseessees 1570
IMIN oo ee e ee e s e se e se s s e ee e sese e sees e seeeees 1576
MIN_CURVE_SURF ..oocoereeeeeosssesssssessssesssssesssssssssssessssesssssssssssssssssssssssesssssssessees 1580
MK _HTML_HELP oo seseesseeeeessesessseeesssseesssesessssssssseessssessseeeeseeenes 1586
IMODIFY CT ovvvooeeeeeeeeeeseseesssseeseessesssssesssssssssssssssssesssssssssessssssssessssssesssssssessssssesessees 1589
IMOMENT oot eseeeseeee s s seeesesees s s e eesesses e sesseseeaeesesess s seeeees 1592
IMORPH_CLOSE .evvvveereeeeseeeesssseesssseessssssssssssesssessssssssssessessessssesssssesnsssessssessessees 1595
MORPH_DISTANCE ...cooivvveeeeseeeseeeeeeesseeesseeesssssessseessssessssesesssssessssesssssessseeessssees 1598
MORPH_GRADIENT ..oovreeevveeeoreeesesesesssseessssesssssessssessssessssssssssssssssssssssssesssssssessees 1601
MORPH_HITORMISSooovvveeeeeeeseeeeeseeeesseeeeessseessseeessssesssssesssssesseseesssesssseeesssseees 1604
IMORPH_OPEN ...oevvveeoeeeeseeeeeesssesssssesssssesssssessssssssssessasesssssssssssssssssesssssesssssssessees 1607
IMORPH_ THIN eooooovveeeoeeeeeeeeeeesseesseeeeseseeesseeseessesessseeesssessesesesesssessseessessessseee s 1610
MORPH_TOPHAT oovvveeoeeeeeeeeeesseesssssessssesssssesssssssssssssasesssssssssssssssssssssssesssssssessees 1612
IMPEG_CLOSE ..ooeevveeeeeeeseeeeeesssesssseeesssessseessessssessseessssessssesesssssssssaesssssesssees s 1615
Y L= o] == N OSSR 1617
IMPEG_PUT ooooeooeeeeeeeeeeeeeseeeeeesseesssseeeseesssseesessssessseeesssessesesssessssseseesessessseesseseees 1621
IMPEG_SAVE .oooreeeeveeeeeseesssessesssesssssesssssssssssssssssesssssssssesssssssssssssssssssssssessssssssessees 1623

IDL Reference Guide Contents

16

1Y I RSP 1625
N = N SR 1627
N_PARAMS .ottt ettt ettt ettt et es 1629
N_TAGS .ottt ettt ettt b et a e et et e et et et e e reneee 1630
NCDF _* ROULINESccveiviieeeiesieiteetestesesteeseesaestesteesee e stesseesestestesseesessestesseesensessensens 1632
NEWTON ettt ettt et esese e et e e nte e s tene st enenensenensenen 1633
INORM .ttt sttt e a et et e e e be et e et e e et e s et et et e e senees 1636
(@] O 2 TR 1639
OBJ DESTROY ..ottt ettt st st s se e ste e sseseseesanessenenes 1641
(@] = SR 1643
(@] = I V1P 1644
(@] = Y2 I 1 1647
(@] Y ST 1650
(@ NV T {2 (] S 1652
ON_TOERRORooitiiitiisieisieesee sttt sttt este e sae b st ese e senees 1654
ONLINE_HELP .ttt 1657
OPENR/OPENU/OPENW ..ottt s es 1664
(@] = 1 1 SR 1673
(@] IO 1 1 o PSS 1678
P_CORRELATE ..ootettieteistes ettt ettt ettt a e sae b e e sanensenees 1680
PARTICLE_TRACE ..ottt sttt 1682
NN I T O S 1 | SR 1685
PATH_SEP ...ttt ettt ettt es 1692
PCOMP .ttt e st et e be et e et e e et e sesa et e et e e seneee 1694
T SRS 1699
o O B =1) TSP 1719
o 1 B 1 I 0 TSP PR 1723
O I SR 1725
T 1 TSP 1727
NV T N TSP 1730
POINT _LUN Lottt sttt es 1732
POLAR_CONTOURootiiiieirieisteeseteseetesestees ettt ens s sae s e sanessenees 1734
POLAR_SURFACE ..ottt sttt sttt es 1742
I SRS 1745
O I] I SRS 1746
O I A SR 1750

Contents IDL Reference Guide

=0 IR = i LSOO 1752
POLY FILL rvvvveeeemeeeeeeeeseseesssesssssssesssssessssssessssssssssessssessasessssssssessssssssesssssessssessessees 1756
POLY FILLY oooooeeeeeeeeeeeeeeeeeeeeesseesseseeessseesssessessesessseeessssessesesessssssseseessssessseeesesenes 1763
POLY SHADE ..ooreeeeveeeeeeeeseeeesesssesssssessssesssssesssssesssssssssessssssssssssssssssssssesssssssessees 1765
POLYWARP ...cooeetteeeeeeseeeeeeeeeessssssseeessssssssseseessssessseeessssessssesssssssssesaesssssessseesseseees 1769
1) = 0 IO 1772
POWELL +.oevveeeeeeeeeeeeeeeeeeeseeeeesssessseeesssesesseessessesessseeesssessesessssesseseseesessessseeeseseees 1773
PREF_COMMIT oeeevveeeeeseeseeeeeesseesssssessssesssssesssssesssssssssessssssssesssssssssssssssssssssssessees 1776
PREF_GET ovvvoeeeeeeeeeeeeseeeeseseeeesssesssseessesessssesessssessseeesssessssesessssssssseesssssessseee s 1779
PREF _IMIGRATE vvvveeeoeeeeeeeeeesssesssssesssssessssssssssssssssessasessssssssssssssssssssssssesssssssessees 1784
= L = = LSOO 1786
PRIMES ...ooeeevveeeeeeeeeeseeeseseessssssssssesssssessesssssssssssssssssssessasssssssssssssssssssssssssessssesseseees 1789
PRINT/PRINTF ..ooooeovveeeeeeeeeeeeeesseessseeesesseesssessessssessseeesssessssesessssssessssesssssessseeeseseees 1790
PRINTD ©ooooeevveeeeeeeeeeeeeeseseessssesesessesssssssssssesssssssssesessssessasessssssssessssssssssssssesssseseessees 1793
= 0 TSSOSO 1794
PRODUGCT vveeeoeeeeeeeeeesseseesssesseessesssssesssssssssssssssssssssssssssesssssesssssssssssssssssesssssseessees 1796
= 00 = TN =SSO 1800
PROFILER .vvvvceoeeeeeeeeeeseseesssessesssesssssessssssssssssssssssssssessssesssssssssssssssssssssssesssseseessees 1803
PROFILES w..ovveeooeeeeeeeeeeeeeeeseeeeesssesssseesesseesssessessesessseeesssessssessssesssssssaessssessseeeseesees 1806
= O N =(oa H VL0 | ST 1808
PS_SHOW_FONTS ..ooocooreeeeeeeeeseeseeeeesseeesseeseessssessseeessssessssesssssssssessesssssesssesesessees 1812
TN = Y OO 1813
PSEUDO .eeeveeeeeeeeeeeeeeeeeeeeeeeeesseeessseeeeseeessseesessesess s essesssseseesesssseseesessessseee s 1814
PTR_FREE .ovvvoooeeeeeeeeessesessssessesssesssssesssssesssssssssssesssssssasesssssssssssssssssssssssessssessessees 1816
PTR UNEW w.eeveeeoeeeeeeeeeeeeeseseeeeesssesssseeesseeesseeesessssessseeesssessesessssessssssaesessessseeeseseees 1817
PTR VALID ovooooeeeeeeeeeseseesssessesssesssssesssssssssssesssssesssssssssesssssssssssssssssssssssessssssssessees 1819
PTRARR ..o eeveeeeeeeeeeeeeeeeseeesssee s sseeeeessesessseesessesses e eesssseseeseesessseee s 1822
PUSHD eovooeeeveeeeeeeseeeseeessessesssssssessesssssssssssesssssssssssssssseesasesssssesssesssssessssssssessssesesessees 1824
011211 < TSSO 1825
QHULL oo eeeeeeessseessssessesseesssssesessssssssessesseessssessssssessessessssesssesesesssessesesesessees 1830
01210V 1= TSSOSO 1835
01210V 1@ XSO 1840
QSIMP oo e ssee e se e s s s see s s s eee s ses e eeeessseeaeeeeses s e seeeees 1843
QUERY _* ROUINES vvvevvreeeeeeeesreeeesessessssesssssessesssessssesssssessssssssessesssssessssssssssessssssees 1846
018 X< | SO 1851
0L N =1V = 1854

IDL Reference Guide Contents

18

QUERY _DICOM ..oovooeoeeeeeeeeeeesseeeeeeesesseeseesesssseessseeessessesseseesssssssssseesssesseseeseseeees 1856
QUERY _GIF eooreeveveeereseesseeeessseessssessesssssessessssessssssssessesssssesessssssssessesssesssssssesseees 1858
QUERY _IMAGE ..ovveoeoeeeeeeeeeeesseeseeeesesseesessesesseessseeessessesseseesessesssseesesssessesessesseees 1860
018 A N = = c TS 1867
QUERY _JPEG2000c.oomeveeeeereseeeeseeeesesssssessesssseesssesesessesssseessssesssssesesssssssseesssseees 1869
QUERY _IMRSID vvvoeeoeeeeeeeeeeeesseessssesesessessessesssseesssssssessesssssessssssssssesssssssssssssesseees 1871
010 = 2 = [H OO 1874
018 3 = N[O 1876
018 A = = Y OSSO 1878
0L A S = =SS 1880
010 = 2 = =SSO 1882
QUERY WAV v eeeeeeeesseessseessessessessesessesssssssesssesssssessssssssssesssssssssssssssseees 1885
R CORRELATE .covvoeeeeeeeseeeeeeeeeesseeeeesssesseseesssssessseesessesssssessssssesseaessssssssessssseees 1887
RUTEST oeeteveeeoeeeeeseeseeeseeessssesesssessssssssssessssessesssssseseseesessssssssseeesssssesssssessesseeesseees 1890
27 o) N TSSO 1892
RANDOMN .ooccoooeeeeeeeeeeeeeseeeesesseesssseesssssssssessssesessesesessesssssesssssssssssesssssssssssesesseees 1901
RANDOMU ...coooreeeeeeeeeeeeseeeeesesseessseeeesssesssseesssssesseessessesssseesesssssssseeesssesseseesseseees 1906
RANKS oo eeveeeeeeeeeeeeseesseeesssessesssesssssessseessssessessesssesesessesssssesssesesssssesssssessessesesseees 1911
RDPIX oo eevecee s eeeeeeeeeseeesseeeesesesesssesesesssesssseessasseessesesessesseseeseeeesssseaesssesseseeseeeeees 1913
READ/READF ..oevvveeoeeeeeseeeeeesseesssesesesssessssssssssesssssesesesesssssssessesssesessssssssssesseene 1915
= T 1N o | E OSSO 1918
READ_ BINARY oevvveeeeeeeseeeeeesssesssssessssesssssssssssessssesessesssssssssssssssssssssssessssssessssees 1922
READ_ BMP ..ooooieeveeeeeseeeseeeeesesssessseeeesssesssseessssssssesssessesssseeesssssssseaeesssessssessssseees 1929
READ_ DICOM .ooevvveeeeeeeseeeeesseeesssesessessessssesessssssssssessesesesssssssessesssesssessssssssesseene 1932
READ_GIF oovoooooeeeeeeeeeeeeeeeseeeeesesssessseseesssesssseesssesesseessessesssseessssssssseaesssssssseeseseeees 1934
READ_IMAGE ...ooevvveeeeeeeeseeeeeesssesssseesesssessssssssssssssssesessesssssssssssssssssssssssssssssesssseees 1936
READ_INTERFILE .ovcoooeoveeeeeeseeeseeeeeesssesesseesssssessseesessesssseeesssssessseeessssssssessssseees 1938
2 T DI = = c T 1940
YT DI = =1c7.(0/0 0 S 1944
READ._ MRSID oooooevvveeeeeeeseeeeeesseesssssessssessssesssssssssssesessesssssssssssssssssesssssssssssssesseees 1948
READ_PICT ooooooeeeeeeeeeeeeeeseeeeesesseessseseesssesssseessssssssssesessesssseeesesssssseseessssssssessssseees 1951
2 7Y o X = N T 1953
READ_PPMcoooereeeeeeeeeeeeseeeeeseessessseeeesssesssseesssssessesssessesssseeessssssssseesssssseseesseseees 1956
READ_SPR ..ovvocooeeeeeeeeeeeseeesssessesssesssssessssessssesssssssssssessssesssssssssssssssssssssssssssssssesseees 1958
READ_SRFcoooereeeeeeseseeesseeeesesssessssseesssesssseesssssessesssessesssseesesssssssseessssssssessssseees 1959
READ._SYLK cooorreeeeeeeeieeeesseeeessssesssssessssessssssssssssssssesessesssssssssssssssssssssssssssssesssseees 1961

Contents IDL Reference Guide

READ _TIFF e e 1965
READ WAV et r e n e nr e 1975
READ_WANVE ... e 1976
READ_X11 BITMARP et 1978
READ _XWD ...ttt e 1980
READS .. e e R e r e nne e n e nr e 1982
READU .o e 1984
REAL _PART et r e r e e n e r e 1986
REBIN oo 1988
RECALL_COMMANDS ... oo 1991
RECONS .. e s 1992
REDUCE_COLORS ..ot e s nne e 1998
REFORM ..o s e 2000
REGION_GROW ..ottt nre e 2002
REGISTER_CURSORooiiiriiinire st e 2005
REGRESSot r e r e e e n e nr e 2007
REPEAT..LUNTIL i 2011
REPLICATE .ottt r e nr e n e e e n e nn e 2012
REPLICATE_INPLACE ... 2014
RESOLVE_ALL oo s s 2016
RESOLVE_ROUTINE ..ot 2019
RESTORE ...t r e r e nr e e s n e nr e 2021
RETALL o e 2024
RETURN e nr e e e n e nre e 2025
REVERSE ... 2027
] N TSP PR TRPR 2029
ROBERTS ...t s 2032
RO e R e r e e n e nre e 2034
ROTATE e st 2037
ROUND ... e e r e e sr e b e me e s r e nre e e e nenre e 2040
ROUTINE_INFO .o 2042
RS T EST et nre e 2045
S T EST e 2048
SA NV E e e e e 2050
SAVGOL ..ottt e 2054
SCALES o ner e nre e 2059

IDL Reference Guide Contents

20

SCALESD ... 2063
SCOPE_LEVEL ..ot 2064
SCOPE_TRACEBACKoeiiii s s 2065
SCOPE_VARFETCH ..o 2068
SCOPE_VARNAME ...t s 2075
SEARCHZD ..o 2081
SEARCHSD ..ot s 2084
SEM_CREATE .ottt nn e nr s 2088
SEM_DELETE oo s 2091
SEM_LOCK ettt r e sr e r e n e e nrenr s 2093
SEM_RELEASE ... s 2096
RS B = PP 2097
SET_SHADING ..o 2100
SETENVY ittt nrenr s 2102
Sl T s 2104
SHADE_SURF ..ot nnenre s 2107
SHADE_SURF_IRR ..ot s 2114
SHADE_VOLUME ..ot 2117
SHIF T e s 2124
SHMDEBUG ...t nre s 2126
SHMMAP s 2128
SHMUNMARP e e e se e e nre s 2143
SHMVAR s 2145
SHOW S e e e r e r e r e n e e nr e nre s 2149
SHOWRONT .. 2154
SIMPLEX e e e 2156
SIN e s 2161
SINDGEN ..t s n e n e ne e 2163
SINH e s 2165
Sl ZE e e R e r e s 2167
SKEWNESS ... 2174
SKIP_LUN e n e nrenr s 2176
SLICERS ..t 2179
SLIDE _IMAGE ..o s 2198
SMOOTH e 2203
SOBEL ..o nrenr s 2207

Contents IDL Reference Guide

101034 =1 IS 2210
1) =3 OSSO 2215
SPAWN ovcooeeveeoeeeeeeees e eeeesseeeeeeseseeesseeeseseeseeseeeesessssase s e eessesseeesseneeees s esesseeeeeeesees 2217
i T N OO 2225
SPH_ SCAT ovvveeeeeeeeeeeeeeeseseeeeeeseeseessseeesesesseeessessesees s seesseseesesseseaeesseeeesesesnsenesees 2227
SPHER HARM oo eeeeeeeeeeeeeeseesessesses s ssessesesseseesaseesseseesessesesesesees 2230
= TR N OO 2233
SPL_INTERP oo eeeeeeeeeeeeeeeseeeeeeeseseeeeseeeesessesseseseeseessesessseseeseeseeseeseesessesesesesees 2235
SPLINE coveoreeeeeoeeeeeeeeseeeeesssseeeeseseeeessseesseessssssesesesessasesesesesesssssesessesaeeessenssessseessesees 2237
i T] =S =TT 2239
i Y. = TS 2242
SPRSAX ecoreeeeeeeeeeeeeeeeeeeees e eeeseeeeeeseee e eees e ee e s e e e ee s eee s e eee s eeeeee 2245
SPRSIN ovoooeeeeeeeeeeeeeseeeeessseeeesessseeesssesseseessessesesesessesesseeeesessesseeessesseeesseneeessseeeesesees 2247
SPRSTP oooooeeeeeeeeeeeeeeeeeeeees e eeeeseeseeesese e eeeeseeeeseeseeses e esseseesees e eeees e esessereeeesees 2250
1] =3 OO 2251
STANDARDIZE evoeoeeeeeeeeeeeeeeeeeeeeeeesseeeeeeseesessessesssseseessesesseeseseesseeseseesessesesesesees 2253
STDDEV ooreeeeeeoeeeeeeeeeeeeeeesseeeesesesseessssesssessssesssessssssssesssesesessessessssessseessenssessssssesesees 2255
1@ =2 2057
STRARR .ooevveeoeeeeeeeeeeeeeseseeeeseseseeessesesesesssseeeeesesese e s e sessenesees s eeeseenesessseseeesees 2258
120 V1 =Y 2259
STRCOMPRESS ...o..coeeeveeeeeeeeeeseessesesssessssessssssssssasesssssssssssssssessessessssesesssssssesesesees 2261
STREAMLINE oo eeeeeeeseeeeseseesessesses e ssessesesseeseessseeseeeesessesesssesees 2263
STREGEX .. evvveoeeeeveeseeeseessseseesessssesssssesssessssssasessssssssesssssssssssssssesssssssessenssessssesssesees 2265
Y= 03 OO 2269
STRING woveoreeeveeeeeeeeeereeeeeessseeeesessseeesseesseseesssssesesesesseseseseeeeesseseeeeseesseeessenesessseesssesees 2271
LN 1 OO 2274
STRLEN ooooeeveeoeeeeeees e eeeeseeeeeesseeessesesesessssseesessssssaseseseeesessssseesssesseeessenesessssesssesees 2276
STRLOWGCASE oo eeeeeeeseeeeeeessseeeesesseeeesesseseseessessssessseseesaseesesseesessesesesesees 2277
STRMATCH ovveoeeeeeeeeeeeeeeeeeeeeeeesseessseessseseseeeseesessssaeessseeseesssssesessenseeessenssessseesesesees 2279
STRMESSAGE ..-eveeoee oo eeeeeeeseeeeeeeseseeeeseeeesesssssesseseseessesesseessesaseeseeeesessesesesesees 2282
STRMID oooreeeeeoeeeeeeee e eeeeeseeeesessseeeeseeesesesssseseeesesess e s e eeessesseees s seeessenesessesesesesees 2284
STRPOS .oooeeeeeeeeeeeeeeeeeeees e eeeeseeseeesess e eeseseeeeeseesesseseeeeeeeeseseeseeseeeseeseseesesseseesesees 2286
STRPUT ooooeeeveeoeeeeeeeeeeeseesesesessesssseesssesseseessss e eesessssesesesesesesssssseessesaseeseenesesssseessesees 2289
YRS = TN n OO 2291
STRTRIM ooeeeoeeoeeeeeeeeeeeeeeeeeeeeesesseesseseseseessseessssssessssesssssesessessesessesseeessenessessseesesesees 2296
STRUCT ASSIGN coeoreeeeeeeeeeeeeeseeeeeeesseeeesesseseessssesssesssessesesssesessessseseeseesessessssesees 2208

IDL Reference Guide Contents

22

STRUCT _HIDE ...ttt 2300
STRUPCASE ...ttt ettt b et b et e b b es 2302
SURFACE ..ottt 2304
SURFR ekt b ettt b e 2315
SVDC et 2316
SV DFIT bbb bbbttt b s 2319
SV SO ettt et 2325
SWAP_ENDIAN et sttt b e 2328
SWAP_ENDIAN_INPLACE ..ottt 2330
SWITCH bbbt bbbt b ettt e b bt es 2332
SYSTIME et 2334
LI O SO SE PSR URPTPERSPRRP 2337
TP D et 2339
LIS B SO O O STTSE PSP TRTOTRRPRP 2341
TAG_NAMES ... 2349
T AN bbb e R e R b h et e b e R e bt e et ae e ne e 2351
TANH e 2353
TEK _COLOR ..ottt ettt et 2355
TEMPORARY ettt 2356
TETRA_CLIP <ottt 2358
TETRA_SURFACE ...ttt 2360
TETRA_VOLUME ...ttt e 2361
THIN et 2363
THREED ...ttt bbbt b e 2365
TIME_TESTZ ...ttt 2367
TIMEGEN ...ttt ettt b et s e e b 2368
TIM_TEST ettt bbbt en e 2374
TOT AL et b e bbbt b e b bt e e 2376
TRAGCE ..o 2381
TrackBall ODJECE ..ottt enes 2383
TRANSPOSE ...ttt 2384
TRI_SUREF ..ottt bbb bbb 2387
TRIANGULATE ..ottt 2391
TRIGRID ..ottt b ettt e e 2395
TRIQL ottt e et n b ne bt 2405
TRIRED ...ttt ettt b et b et e s 2408

Contents IDL Reference Guide

TRISOL ..ttt ettt ettt st b e et e e e be e s be e sbeesbe e beesbeesbeesbeebeenbeenbeenbesnresanes 2410
TRUNGCATE _LUN sttt te et be et et e ne e nn e enn e s 2413
TS COEF ..ttt sttt e e e s te s beeae e s e s resteereetentenne s 2415
TS DI ettt e et e s b e e aeeae e e besbesaeeeesbesbeebeesesbesbeebeentetesneas 2417
LIRS T S 1 RSP SSP 2419
TS SMOOTH ettt sttt be st et e s beebeebeetesbesbesbeenbenbesaens 2421
B Y 2RO 2424
B IV Z O = T 2438
B Y4 N 4 TR 2440
B IV {0 2449
TV SCL ittt ettt e et e s be e s ba e b e e be e beeabe e e be e beebeebeeabeenresaras 2454
UINDGEN ..ottt ettt ste et et ets st e st e saaeeressbessaeesaessaeesnassressressnessaessrenas 2458
L 11\ OSSPSR 2460
L LV I SR 2462
ULBAINDGENoeitiiiteecteeteeteeste ettt ettt et et sttt et s e s abesaaesreesaeesneesneesbeeas 2464
L L AT T N T 2466
ULONBAARR ...ttt ettt ettt ettt ste s be s abeeas e e aeesatesatesabesatesaessaeesneesaeesrenas 2468
L @\ A R 2470
ULONG ..ottt ettt et ettt e et e e te s ate st e st e eaeeeseeeasesanesabesatesreesasesaeesneestenas 2472
L]I\ 7 R 2474
UNITQ ettt ettt ettt et ettt e it e s et e s aeeebeeebeesbessaeesbeesbeesbeesbeesbeebeeateessenns 2476
UNSHARP IMASK ..ottt sttt b ettt et st b eneennesre e 2478
USERSY M ettt ettt ettt et st st st et eae e s ate st sabesaeesreesaeesaeesneesbeeas 2482
VALUE LOCATE oottt ettt ettt st et eaae st s eae e e et saeenaesne st anis 2486
VARIANGCE ..ottt s s s be e st e e sbe e beesbeesbeesbeesbeenes 2488
VECTOR _FIELD ..ottt sttt be s e re b e sre b ene 2490
AV = OO 2492
RV = IO A (O 2494
RV I 1S LS 2497
AV 2499
VORONON ...ttt ettt ettt s be e e aeesaeesaeesbaesbeesbeesbeesbeesbeesbeesbennns 2502
VOXEL _PROJ ..ottt ettt sttt st st et eae e st s ae s ae e e e besaeeneesnesreanis 2504
LAY 72 I OO SR 2510
WARP _TRI ettt sttt et st e e be e e be b sae e e resbeeneennesresbeenes 2511
WATERSHED ...ttt s b e be e sbeesbe e beesbe s 2514
WAVEIEL TOOIKIT ...ttt et ete e et e e beeeebeeeaeeens 2518

IDL Reference Guide Contents

24

WDELETE .ooooevveeeoeeeeeeeeeeeesseeseseeesessssssesseessseessessssssssessseeesassssssesesesssesssesesssssessenes 2519
W DRAW <.oeeevveeoeeeeeeeeeessesesssseessesssssssssssssesessesessssssssssesssassssssssesssssesssssesssesessenes 2520
WHERE .oocoooeeeeveeeeeeeseeseeeeesssessseeesesssessssseessesesseseseesssessseeesesesssssseessssessseeesesssessenes 2524
WHILE...DO revvveeeeeeeeeeeeessesesssseesesssssssssssssssessesessssssessssssessssesssssesssssesssssssessssssenes 2528
WIDGET ACTIVEX vvveeeeeeeeeeeeeessseeeseeeeesesssesssseessssessseseessssessseessssessssenessssessssens 2529
WIDGET _BASE wovvooroeeeeeeeersssessseeesesessssssssssseeessessssssssssssessssssssssssesssssssssssssessssssenes 2536
WIDGET _BUTTON eoeeveeeeeeeeeeeeeeeeeessseeseeesseeesseessessssessseessessesssssessssssesssesesesssessenes 2563
WIDGET_COMBOBOX .vvoormeeeeeerreesesseseessseeessessssssssssssesesssesssssesssssesssssesssssessenes 2579
WIDGET_CONTROL .ovvveeoeeeeeeeeeeeeeseseeeeeesseeesseesesssssessseessssessssssesessssesssssesssssessenes 2590
WIDGET_DISPLAY CONTEXTMENU .oooooreveeeeerseeseeeeeeesssseessesesssssesssssesssssessenes 2642
WIDGET _DRAW ..coormeveeeeeeeeeeeeeeeessseseeseeesseeessesssessssessseessssssssssseesssssessseeessssssessenes 2644
WIDGET _DROPLIST wvvvveeeeeeeeeeeeessssssesssseessesessesessssssssssessssssssssssesesssesssssesssessssenes 2666
WIDGET _EVENT oooooeeeeeeeeeeeseeeeeeessseseeseeesseeessesssssssessseessssssssseseesssssesssesesssesessene 2676
WIDGET _INFO ovvooreeeeeeeesseeessseesesssessssssssseesssesssssssessssesesssssssssesssssesssssessssssssenes 2680
WIDGET _LABEL .oooeeeeeeeeeeeeeeeeeeeeeseseeseseeesseeesseesessssseesseesssssssssssessssssesssesesssssessenes 2711
WIDGET _LIST covveoreeeeeeeeeeseseesssesessssesssesssssssessssesssssssssesssssssssssssssssessssesssesssessssennns 2718
WIDGET_PROPERTY SHEET ..ooocooeeeeeeeeeseeeseeeeeesssseesseeessssssssssesessssesssssessssssessene 2728
WIDGET_SLIDER .ooeevveveeeeeeeeeseeesesssessssssessesessesessssssssssesesassesssssesssssssssssesassssssenes 2747
WIDGET_TAB woovoeoeeeeeeeceesseeseseeesesssesssseeesseeessesessssseesseessssssssssseesssssesssesesssssessenes 2757
VY n =t il 7 =T Y 2767
WIDGET _TEXT ovooooeeeeeeeeeessseseseeesssssessssesessesessessssssssessssessssssssssseesssssesssesesssssessenes 2789
WIDGET_TREE ovvoormeeeeeeeessseesssssesssssesssssssssssessesssssssssssssssssssssssssessssssesssssesessssssenes 2802
WIDGET_TREE_MOVE ..oooroeeeeeoeeeseeeeeeeesseeesseeeeesssseesseeeessssssssssessssssesssesessssssessenes 2818
WINDOW .oooeeeveeeeeeeeeseeeesseseessssssssseesssesssssssessssesssssesssessssssssssssessssessssesssesssessssennns 2821
WRITE_BMP .oveoeceeeeeeeeeeesseeeeeeeeseesseeseseeessesesseesssssssessseeessssssssesesesssesssesessessessenes 2825
VY =T =3 1 =SS 2828
WRITE_IMAGE ...ocooeeeeeeeeseeeeeeeeesesssseseseessseeesseessessssessseessssssssssseesssssesssesesesssessenes 2830
VY =T =N == IS 2832
WRITE_JPEG2000ovvveeeeeeeeeeeeeeeeeesesseseeesseeesseessssssessseessssssssssseesssssesssseesesssesseees 2835
WRITE_INRIF 1ovvveeooeeeeeeeeeesesseesssesesesssssssssssssseessessssssssssssssssssssssssssesssssesssssessssssssenes 2837
WRITE_PICT ovvveeoeeeeeeeeeeeesseeseeeeessesssesseseeessesessesssessssessseessssssssssseessssesssesessessessenes 2839
VY =T =2 = NS 2841
WRITE_PPM oo eeeeeeeeseeeeeseeesessesssseeesseeessesesessssessseeesassessseseesssssesssesesesssessenes 2844
VYT = = = Y 2846
WRITE_SRF .oovvveeoeeeeeeeeeeesseeesseeesssssssseseeessesessesesesssseesseeessssessssseesssssessseeesssssessenes 2848
WRITE_SYLK ovvvveereeeeeeeeeessseesssssessssssssssssssssssessesssssssssssssesesssssssssesssssesssssssessssssenes 2850

Contents IDL Reference Guide

WRITE_TIFF ovveeeoeeeeeeeeeeeeseseeseesesesseesssesesesesessesesssssessseeesesssssseseesesseesssesesssssseseees 2852
WRITE_ WAV oo eeveeeseeeesseessesssssssseesesssessesesssssssssssessssssssssesssssssssssesesssssssees 2863
WRITE_WAVE .oooocoeeeeeeeeoeeoseeeeeseeeesssseeseseesssssessesssesssssssseeesssssssssesessssessssesessesssseees 2864
WRITEU oo eeeeecoeseeseesessessesseesssessssessssesesesessesessssssssssssssessssssssesesssssssssesssssssssens 2866
WVSET evveeeereeeeseeeesesssessseeeseeseeesseeesess e seseseeseesseesesesssessssea e seesssseesessessseeeesesesessenes 2868
WWSHOW ovocoooeeeeeeeoseseeseesesseesesseesssessssssssesesesessesessssssssssessessssssesesesssssssssesesssssssees 2870
WVTN oo eeeeeee s esee e eese e e e e s e seeesseeeesseess s eseseeseees 2872
VWV % ROULINES vvvvveereeeeeeeeeseessesseesssesssesssssessesesessesessesssssssssssessesssesesnsssssssssesssssesssees 2877
XBM_EDIT ooooeevveoeeeseeeseeeeessseesseeeesesssesssesesesssessseesssssessseseessesssseeessssessseseesesesesseees 2878
D DI = 17N = T =Y 2880
XDXF reeeveeeeeeeeeeeeeeeeseseeesseeeseesseesssese e s s s s s e s e eeesss e sesssseeeseeseess e eeeseeseees 2883
XIFONT eevvveeeeeeeseeeeeseseeesseseesesssesssessseseesssssessesessssseseeesessesesseeseesseseseeseessssseessssessees 2887
XINTERANIMATE .ooroeveeeeeeseeseeeeesesseseseseeesseesesesesesssesseseeesssesssseesesessssesesssssessees 2889
XLOADCT oveoreeeeeeeeereeeeesssseeesseessssssssssesssesesesssessssssssssssssesessessssssssessessesssssesessssessees 2897
XIMANAGER .. evvoeeeeeeeeeeeeesseeseeeee s sseseseessessssesesesseesseeesesesesseseeeeseesseeseeseseeseees 2908
XIMING._ TIMPL oo eeeeeesseesseeseseseesssesesesesesssssssesssessesessesssssssseseessesssssessssssessees 2916
XIMTOOL ovvveeeeeseeeeeeeeeeeeeeeeesseeseseseseseessseseeesseessseseeeseesseseeesesesseseeesseesseesesseseeseees 2018
XOBIVIEW oo veeeeeseeeseesseesseessesesessssssssesesssessssesssssesssssssessssssssesssssesssssssessssssenes 2920
XOBIVIEW_ROTATE .ovvoeooeeeeeeeeeseesseseeeeesessessseesssssssssesesessssssssesssssessssssesesssessenes 2930
XOBIVIEW_WRITE_IMAGE ..covvveeoeeeeeeeeeeesesesseeeessesssessesesessssssesssssssssssesesessssessens 2932
XPALETTE ooooeevveeeeeseeeseeeeeeesseesseesesesssesssesesssssessssesssssessseseesssssssseessssessseeeesesesesseees 2934
XPCOLOR coveooreeseveeereseeesseseesesssesssssssessesssssesessessssssssssssssssessesssssssssssessesssssesesssssssees 2942
XPLOTBD ovveeoeeeeeeeeereeeseeseeeeesssesssesesessesssesesesssesssseseseeseesseseeesesesssseeesseesssesessesseseees 2943
XREGISTERED ..ovvvcoooeeeeeeeessssessessesessesssssessssessssssssssssssssesssssssssssssssssssssesessssessees 2951
XIROI et veeeeeeeeeeeeeeee e eeeeee s sesee s e se e e e s s e e s s eeeseses s aeeessseeeeesseesees 2953
DS O T 1 =1 OO OY 2971
XSURFACE ..ooevvveeeeeeeeeeeeeeesssesseeeesessesssesesesssessssesesessesssesseesssesseseesesseessseeesseeseseees 2974
XVAREDIT oo vveeeeeseeeseesseesseessssessessessssssssssessssessessssssessssssssssssessssesssssssesssssssnes 2976
XVOLUME .cooeevveeeeeseeeeeeeeeessseeseeesseessessseeessssessseesssssesssesesessesssseeessssessseeeesesesesseees 2978
XVOLUME_ROTATE ovvoveoeeeeseeeeeseseessssesesssessssesssssssssssssssssssssssessssesssssssessssssenes 2989
XVOLUME_WRITE_IMAGE ..ovvooeoeeeeeeeeeeeeeseeeseeeesesssesseeesssssessssesssssssssesessseseseees 2992
XY OUTS ovvvveeeeeeseeeeeesseesseseesesssesssssssessssssesesesesessssssssssssssesessessssssssesssssssssssesesssssssees 2994
y4010) Y TS 3000
y4e o)V I Y 3004

IDL Reference Guide Contents

26

Part 1l: Object Class and Method Reference

Chapter 4
IDL ODbject Class OVEIVIEWeuieiiiiiiiiiiiiieieaaeae e 3009
USING the ClaSS REFEIENCEccvvvieie ettt sne s 3010
(@ o)1= ot 0] 0 =SSR 3013
S [= =0 I (0] 0= (=SSR 3017
Undocumented ODJECt ClIasSESooiiiieeierereieeee et 3021
Chapter 5
ANalysisS ODJeCt ClASSESuuuiiiiiiiiiiiiiiiieeee e 3023
0TI 1 | 3024
IDLBNROIGIOUDevteiiieeieieesesesieiesese e iebe e sttt b bbb se bt 3053
Chapter 6
File Format Object ClaSSESuuuiiiiiiiiii i 3071
IDLFFDICOM oottt 3072
IDLffDICOM Object DICOM Conformance SUMMAIYcccceeererrereereserseneenes 3074
IDLIFDXE ettt bbb 3108
IDLFFIPEG2000ocuiuiuiierieeeieeresisieiesesesasesseesesesessesesessssssssessssssssesesesssessssssensssssssasens 3138
Overview of IDL and JPEG2000ccooerueererenirieeeeseesieseesese s seesessessesseseeneas 3140
IDLFFLANGCALeeereeeeuerererieieenesesisiee e tesese e e e se st b se e st be s e e e st be e s s et bane e 3175
IDLFFMJIPEG2000coeuiiieieieniiresieieiesesesiesesee s sse e 3190
IDLIFMISID .ottt sttt bbbt s bt 3246
T o T SRR 3259
Overview of ESRI Shapefiles ..o 3261
IDLFFXMLDOM CISSEScveuiiiieieiinisisieieieesesesiesesesessssesese st ssssesese e 3297
IDLIFXIMLDOMA ..ottt sttt 3298
IDLFEXMLDOMCDATASECHON ...vviniiriieieieiesieieiee s 3307
IDLfFXMLDOMChEICtEIDELAcvceeeeieeieeririeieiesesesisie e 3311
IDLfFXMLDOMCOMIMENTcutiiiieiiirisieieieeseseeiesesesesisse e 3324
IDLFFXMLDOMDOCUMENEcuiiireeieeeririeiesesesesessesesesesssssseessssssssesesssessssssessssssssssens 3328
IDLFFXMLDOMDOCUMENtFIAgMENTeceeieciecieceece et 3365
IDLFFXMLDOMDOCUMENETYPE ..eiuveeeeeeeerieseeeteeeesieseesteeeesieseesseeeeeeseesneeneeseseesneens 3370
IDLFFXMLDOMEIEMENLoviiiieieicieiris et 3377
IDLFFXMLDOMERNEILY .oeeiteteiiririeieeneses e seses st 3390
IDLFFXMLDOMENtItYREFEIENCEveveeieciecieceeese et 3397

Contents IDL Reference Guide

IDLFFEXMLDOMNAMEANOUEMED ..ottt 3401
IDLFEXMLDOMNOGEoooviieieieeiisiesieieese st se st sae e e nae e esessesseneens 3412
IDLFEXMLDOMNOGEIErGONcovirvirieieieriisieieeriesie st 3440
IDLFEXMLDOMNOGELISE ...oveueeeieieiesieieesieseee et ese s neens 3447
IDLFFXMLDOMNOLEIION ..ottt 3453
IDLFFXMLDOMProcessingINSIIUCLIONoccevrrieeeeese e 3459
IDLIFXMLDOMTEXL vttt sttt s 3466
IDLFEXMLDOMTIEEWEAIKEN ..eeeeeeeeeeeeieeee sttt 3472
IDLTEXIMLSAX ittt ettt sttt s 3494
Chapter 7

ITOOIS ODJECT ClaSSES ..ottt 3539
10]I (O] 7= S 3540
IDLITCOMMANASEL ..ottt st esee e ses 3553
[DLITCOMPONENL ..ottt sse st b e et et b s e s enesne e e s 3559
1] L (O] = 1= TSP 3588
1] {5 - S 3602
[IDLItDEIACONTAINEYcctieeeeeeieiteeeeieseeste et e e eeeaee e tesresseeeeseesaesseeneesbesnesneeneeseesees 3624
IDLItDAIAOPENBLION ...ttt st b e e b b e ens 3637
IDLItDITECEWINAOW ..ottt et see e 3652
[IDLITIIMESSAING .veuveueeueeuerierieseeieeiessesseeese st s sesee e st st seee et sbe b sae et ebess e s e s sneneeneenes 3674
T I 01 =TT o = e 3693
IDLitMani pUlatorCONTAINEYc.coirierieieiesiesieee et 3724
IDLItMani pUlEtOrM NAQETccceeeeeeieeieeieeieseeseee e e see e saeesee e e e e sreesreesreenseesreenns 3743
IDLItMaNIPUIEEOIVISUELoveueeiieiisieiieieese et 3752
T (@ o= (o] o I 3761
T I = 0 R 3783
D L 4= (= S 3806
T4 == o [SR 3822
5 e o S 3835
T]I 0o 0 T 3901
5 S 3903
T I AY A ES U= 2 4 o] 3924
T4 g (oSS 3993
0TI Y S 4040

IDL Reference Guide Contents

28

Chapter 8

Graphics ODJECt ClaSSESciiiiiiiiieiiieieieeeeeics e e e e eeeeaeenes 4053
IDLGIAXIS ooteiteeieitesie et eteeste st st et e e st st e e e s te st e ese e e e aestesbeenaebesresseessentestesaeeneensentesneens 4054
T 15 =T = P 4089
1] Io @ 170l o0 = (o [P SURRRN 4124
IDLGICOIOMAN ... e 4158
10T I | £ @0 1o | SRR 4180
IDLGIFONT .ttt ettt s b e b e b e sae e b e e b e e b e et e enbeebeebeeanea 4222
1T I 1 0= TSP 4232
10 I = T oo R 4271
0o ' o | SRR 4293
1] 151/ oo = P 4311
IDLOIMPEG ...ttt bbbttt sttt 4336
]I 1 = = £ =P 4353
I = £ = o SRR 4375
0]I o PSSR 4386
10 o o1 YT o SRR 4412
1T o Y7 T S 4444
1o g 1= SRR 4472
] 5 | P 4503
IDLOIROIGIOUD wuteetieitieteeieeeeeeseseesseesstessaesseesseessesssesssesssessseesseessessesssessesssesnsesnsens 4524
IDLGISCENEooteitieie ettt ettt et ettt ettt st et e bt e b e e sbe e she e sbe e be et e enbeanbeenbeeareentea 4541
T]I T g = TSR 4554
10]I Y o] T R 4593
T] Ie T =S | (o RS 4605
1 = P 4616
10 o YT T SRR 4642
T T Io Y L= 1Y (01U o LR 4661
1T Io Yo 11 0 1= SRR 4673
10| Y P 4705
10]I YT 0T [0 SRR 4727
Chapter 9

Miscellaneous Object ClaSSesS ... 4793
1]I 0 =1 = R 4794
[IDL_IDLBIIOGE .ovieeueeieriirieieietesiesieesiesiesiesee s stesee e sse s see e ssessessesessesseseeeenensens 4806

Contents IDL Reference Guide

IDL_SAVEFIE .ottt 4836
IDLCOMACTIVEX ..ottt ettt sttt e e et e e tesneeseeneentesneeneenenneesen 4859
T]I o g1 T o (o P 4862
= =@ o = ot 4869
T LIS YAV T 11 (o Wy o ST 4878

Overview of Multi-Monitor SUPPOITcceeeeeieiiee e e 4880
LI @ 0= - | ST P R SPRPRPR 4896

Part Ill: Appendices
Appendix A

IDL Direct GraphiCs DEVICEScevvvvuriiiiiiiiieeeeeeee e 4909
SUPPOITEA DEVICESeeeceeceee e see sttt e st ste st e te e te e s te e te s tesntesnnesneesneesnaesreens 4910
Devices With SCAlabl@ PIXEIS ...t 4912
Keywords Accepted by the IDL DEVICESc.cccveeeeriirieieeeriesresee e 4913
WINAOW SYSLEMS ...ttt sttt re e e besae e e saeseenns 4954
Printing GraphicS OULPUL FITESeoeeeieeeee e 4957
THE CGM DEVICE ..ottt sttt sttt be e st e s re e b e esaentesaesneas 4960
TREHP-GL DEVICEoeciieee ettt e et te et te s s re e te et et eeesnnesnnas 4962
The Metafile Display DEVICEcceeceii ettt 4964
The NUIl DiSplay DEVICEcoiieieeere ettt st eenaenne s 4966
TREPCL DEVICE ...eeeeecieseeeese sttt sttt sttt e ae s besreebeetenrenne s 4967
B (SN e T 1= BTV o= 4969
The POSESCIIPE DEVICEveceeeie ettt ettt st reeaenaesne s 4970
The RegiSTermMiNal DEVICEccueeiere ettt sse e nae e 4983
The TEKLIONIX DEVICEocueceieie ettt sttt st reenaenbenne s 4984
The Microsoft WIiNAOWS DEVICEccceverieriie et et ste et st 4987
The X WINAOWS DEVICEcoceiieieieeesie sttt sttt ettt eaenresne s 4988
THE Z-BUFFfEI DEVICE .evieee ettt sttt e te s be ettt ene e e 4998
Appendix B

GraphiCs KEYWOIAS ...ccceveeiiiiiiiiiiiiiieee e e e e ee e e eeeeeeee s e e e e e e e ee e 5003
Appendix C

Thread Pool KEYWOIdScoooiiiiiiiiiiiiiiie et 5025
Appendix D

System Variablescoovieeiiiiicci e 5027
What Are System VariablES? ... s 5028

IDL Reference Guide Contents

30

Constant SysStem VariableSccoeiirieiiniieere s 5030
Error Handling System VariableSc.oooooiii e 5032
IDL Environment System Variablesccocviiirrnienineecsesee e 5038
Graphics System Variallesooeeiiiiieeer e s 5049
Appendix E

1 I o =] £ =T =T oo =T PP 5067
ADOUL IDL PrefErENCEScooeiiiieeeieeees ettt s e ee e 5068
Genera User Environment PrefErenCescovecevvieeceeresie e 5077
Directory and Search Path Preferences ... see e 5081
ICPU SettingS PreEfErENCESoivieeerierieseeiee sttt 5085
General GraphiCS PreferenCeSoocvicieeiecece et s 5087
Windows GraphiCS PrefErenCeEScooereeerirerieeeisie et 5088
X Window System GraphicS Preferencescoceveeieeiiecveesiescesee e see e 5092
WiNAOWS IDE PrefEreNCESocvieiecee ettt sttt ettt ettt e re s neenne s 5096
MOLIT IDE PrefEIENCESeeeeieieeeie ettt sttt ene s 5106
Windows RUNEIME PrEfErENCESccuiiie ettt 5111
Support for Obsolete Preference MeChaniSmScccccvecvvcevce e sen e 5113
Appendix F

Special CharaClers ... 5117
Appendix G

ST =T VA= B AV Y o £ 5123
Appendix H

OIS e 5125
Overview Of FONESTN IDL ..ot ens 5126
(O 101 T 0 o =W o L Y/ o= S 5127
Fontsin IDL Direct vS. Object GraphiCscccocveeeiereniiecreesese e 5129
About Hershey VECLOr FONLScccviiiiiiiciesiese st 5130
ADOUL TIUETYPE FONLS ...ttt st ene e e seeene e 5132
ADOUL DEVICE FONLS ...ttt sttt 5136
Controlling Size, Position and FONt USEccooiiiieie e 5143
Embedded Formatting ComMmMAaN Sccoveveiiieeieesisi et 5145
Formatting Command EXamMPIEScooieeiereiieeeeeres et 5149
TrueTYPE FONt SAMPIES ..ot seesreenes 5155
Hershey Vector FONt SAMPIEScooiiiiieierese ettt 5160

Contents IDL Reference Guide

31

Appendix |

IDL GUIBuilder Widget Referenceccccceevvieeieiiiiiieieeeeceeeee 5177
CommOoN Widget Properti€Scvcceeiiiiiieiee sttt st nee s 5178
Base Widget PrOPEITIEScceeeiiierieeeeeerie e 5184
BULtON WiIdQEL PrOPEITIES ..oveeeeieeciecees ettt s e e 5198
TeXt Widget PrOPEITIESooeieeeeeeee sttt eneenaesne e 5204
Label WIdget PropErtiESceccviiecieeee ettt st s 5211
Slider Widget PropertieSooeoeeoeeiiiiere ettt s 5213
Droplist Widget Properti€Sc.oivieeeece ettt st 5217
ListhoX Widget PrOPEITIESc.oieieeeese et 5220
Draw Widget Properti€Sc.ccv ettt st s 5224
Table Widget ProOpertieS ...ttt sne s 5231
Tabh Widget PrOPErTIES ..ouvceeie ettt ettt st r e ae b nne s 5241
Tree Widget PrOPEIMIEScocoieieeee ettt st seesne e 5244
Appendix J

ODbSolete FEAUIEScoooiiii ittt 5249
What Are ODSOIELE FEAIUINES?ooiiiiiieeeee et 5250
Features ObSoleted iN IDL 6.3ocveeeeee ettt 5251
Features ObSoleted iN IDL 6.2ccooeieiiirireceese e s 5252
Features ObSOleted iN IDL 6.1occveveieee ettt st s 5254
Features Obsoleted iN IDL 6.0cccooeieiririneceesere e e 5256
Features ObSOleted iN IDL 5.6ccveieieieceeere et st 5258
Features Obsoleted iN IDL 5.5ooo oo 5259
Features Obsoleted iNIDL 5.4ooe o st 5261
Features Obsoleted iN IDL 5.3 ..ot s 5264
SDF Routines Obsoleted iN IDL 5.3c.ocioieieceeeee et 5268
Features Obsoleted iN IDL 5.2 ..o e 5269
Features Obsoleted iN TDL 5.1ooveieeeceeiere et st 5270
Features Obsoleted iN IDL 5.0cocoveieiiiirerieeesesie e 5271
Features Obsoleted in IDL 4.0 OF Earlierccoeviveciecececeeee e 5273
Obsolete System Variablescccv e iieiie et 5280
Obsolete GraphiCS DEVICEScociieiiririerieie et 5282
N EX it 5283

IDL Reference Guide Contents

Chapter 1
Overview of IDL Syntax

Thisreference is acomplete listing of al built-in IDL functions, procedures,
statements, executive commands, and objects, collectively referred to as
“commands.” Every IDL language element that can be used either at the command
line or in aprogram islisted alphabetically. A description of each routine follows its
name.

Note
Descriptions of Scientific Data Formats routines (CDF_*, EOS *, HDF_*, and
NCDF_* routines) can be found in the Scientific Data Formats book.

Routines written in the IDL language are noted as such, and the location of the . pro
filewithin the IDL distribution is specified. You may wish to inspect the IDL source
code for some of these routines to gain further insight into their inner workings.

Conventions used in this reference guide are described below.

IDL Reference Guide 33

34

IDL Syntax

The following table lists the elements used in IDL syntax listings:

IDL Syntax

Chapter 1: Overview of IDL Syntax

Element

Description

[1 (Square brackets)

Indicates that the contents are optional. Do not include the
bracketsin your call.

[] (Italicized square

Indicates that the square brackets are part of the statement

brackets) (used to define an array).

Argument Arguments are shown in italics, and must be specified in
the order listed.

KEYWORD Keywords are all caps, and can be specified in any order.
For functions, al arguments and keywords must be
contained within parentheses.

/IKEYWORD Indicates a boolean keyword.

Italics Indicates arguments, expressions, or statements for which
you must provide values.

{} (Braces) * Indicates that you must choose one of the values they

contain

* Enclosesalist of possible values, separated by vertical
lines(])

» Encloses useful information about a keyword

» Definesan IDL structure (thisisthe only casein which
the braces are included in the call).

| (Vertical lines) Separates multiple values or keywords.

[, Valuey, ..., Value,]

Indicates that any number of values can be specified.

[, Valuey, ..., Valueg]

I ndicates the maximum number of values that can be
specified.

Table 1-1: Elements of IDL Syntax

IDL Reference Guide

Chapter 1: Overview of IDL Syntax 35

Elements of Syntax

Square Brackets ([])
e Content between square bracketsis optional. Pay close attention to the
grouping of square brackets. Consider the following examples:

ROUTINE_NAME, Valuel [, Value?] [, Value3]: You must include Valuel.
You do not have to include Value2 or Value3. Value2 and Value3 can be
specified independently.

ROUTINE_NAME, Valuel [, Value2, Value3]: You must include Valuel. You
do not have to include Value2 or Value3, but you must include both Value2 and
Values, or neither.

ROUTINE_NAME [, Valuel [, Value2]]: You can specify Valuel without
specifying Value2, but if you specify Value2, you must aso specify Valuel.

* Do not include square brackets in your statement unless the brackets are
italicized. Consider the following syntax:

Result = KRIG2D(Z [, X, Y] [, BOUNDS=[xmin, ymin, xmax, ymax]])
An example of avalid statement is:
R=KRIG2D(Z, X, Y, BOUNDS=[0,0,1,1])

* Notethat when [, Valuey, ..., Value,] islisted, you can specify any number of
arguments. When an explicit number islisted, asin [, Valuey, ... , Valueg], you
can specify only as many arguments as are listed.

Braces ({})

e For certain keywords, alist of the possible valuesis provided. Thislist is
enclosed in braces, and the choices are separated by avertical line (|). Do not
include the braces in your statement. For example, consider the following
syntax:

READ_JPEG [, TRUE={1|2|3}]

In this example, you must choose either 1, 2, or 3. An example of avalid
statement is:

READ_JPEG, TRUE=1

* Bracesare used to enclose the allowable range for a keyword value. Unless
otherwise noted, ranges provided are inclusive. Consider the following syntax:

Result = CVTTOBM(Array [, THRESHOL D=value{0 to 255}])

IDL Reference Guide IDL Syntax

36

Italics

Chapter 1: Overview of IDL Syntax

An example of avalid statement is:
Result = CVTTOBM(A, THRESHOLD=150)

Braces are also used to provide useful information about a keyword. For
example:

[, LABEL=n{label every nth gridline}]
Do not include the braces or their content in your statement.

Certain keywords are prefaced by X, Y, or Z. Braces are used for these
keywords to indicate that you must choose one of the values it contains. For
example, [{X | Y} RANGE=array] indicates that you can specify either
XRANGE=array or YRANGE=array.

Notethat in IDL, braces are used to define structures. When defining a
structure, you do want to include the bracesin your statement.

Italicized words are arguments, expressions, or statements for which you must
provide values. The value you provide can be anumerical value, such as 10, an
expression, such as DIST(100), or a named variable. For keywords that expect
astring value, the syntax is listed as KEY WORD=string. The value you
provide can be a string, such as'Hello' (enclosed in single quotation marks), or
avariable that holds a string value.

Theitalicized values that must be provided for keywords are listed in the most
helpful terms possible. For example, [, XSIZE=pixels| indicates that the XSIZE
keyword expects avalue in pixels, while

[, ORIENTATION=ccw_degrees from horiz] indicatesthat you must provide a
value in degrees, measured counter-clockwise from horizontal.

Procedures

IDL procedures use the following general syntax:
PROCEDURE_NAME, Argument [, Optional_Argument]

where PROCEDURE_NAME is the name of the procedure, Argument is a required
parameter, and Optional _Argument is an optional parameter to the procedure.

IDL Syntax

IDL Reference Guide

Chapter 1: Overview of IDL Syntax 37

Functions

IDL functions use the following general syntax:
Result = FUNCTION_NAME(Argument [, Optional_Argument])

where Result is the returned value of the function, FUNCTION_NAME is the name
of the function, Argument is arequired parameter, and Optional _Argument is an
optional parameter. Note that all arguments and keyword arguments to functions
should be supplied within the parentheses that follow the function’s name.

Functions do not always have to be used in assignment statements (i.e.,
A=SI N(10. 2)), they can be used just like any other IDL expression. For example,
you could print the result of SI N(10. 2) by entering the command:

PRI NT, SIN(10.2)
Arguments

The “Arguments” section describes each valid argument to the routine. Note that
these arguments are positional parameters that must be supplied in the order indicated
by the routine’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
(“output arguments”) are described as accepting “ named variables’. A named
variableis simply avalid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
EXPression causes an error.

Keywords

The“Keywords’ section describes each valid keyword argument to the routine. Note
that keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL routines by including the keyword name
followed by an equal sign (“*=") and the value to which the keyword should be set.
The value can be avalue, an expression, or a named variable (anamed variable is
simply avalid IDL variable name).

IDL Reference Guide IDL Syntax

38

IDL Syntax

Note

Chapter 1: Overview of IDL Syntax

If you set a keyword equal to an undefined named variable, IDL will quietly ignore
the value.

For example, to produce a plot with diamond-shaped plotting symbols, the PSYM
keyword should be set to 4 as follows:

PLOT, FINDGEN(10), PSYM=4

Note the following when specifying keywords:

Certain keywords are boolean, meaning they can be set to either O or 1. These
keywords are switches used to turn an option on and off. Usually, setting such
keywords equal to 1 causes the option to be turned on. Explicitly setting the
keyword to O (or not including the keyword) turns the option off. In the syntax
listingsin thisreference, al keywords that are preceded by a slash can be set
by prefacing them by the slash. For example, SURFACE, DIST(10), /SKIRT is
ashortcut for SURFACE, DIST(10), SKIRT=1. To turn the option back off,
you must set the keyword equal to 0, asin SURFACE, DIST(10), SKIRT=0.

In rare cases, a keyword's default value is 1. In these cases, the syntax islisted
as KEYWORD=0, asin SLIDE_IMAGE [, Image] [, CONGRID=0]. In this
example, CONGRID is set to 1 by default. If you specify CONGRID=0, you
can turn it back on by specifying either /CONGRID or CONGRID=1.

Some keywords are used to obtain values that can be used upon return from the
function or procedure. These keywords are listed as KEY WORD=variable.
Any valid variable name can be used for these keywords, and the variable does
not need to be defined first. Note, however, that when akeyword callsfor a
named variable, only a named variable can be used—sending an expression
causes an error.

For example, the WIDGET_CONTROL procedure can return the user values
of widgets in a named variable using the GET_UVALUE keyword. To return
the user value for awidget ID (contained in the variable mywi dget) in the
variable user val , you would use the command:

W DGET_CONTROL, nywi dget, GET_UVALUE = userval

Upon return from the procedure, user val contains the user value. Note that
userval did not have to be defined before the call to WIDGET_CONTROL.

IDL Reference Guide

Chapter 1: Overview of IDL Syntax 39

Some routines have keywords that are mutually exclusive, meaning only one
of the keywords can be present in a given statement. These keywords are
grouped together, and separated by a vertical line. For example, consider the
following syntax:

PLOT, [X,] Y[, /DATA |, /IDEVICE |, INORMAL]

In this example, you can choose either DATA, DEVICE, or NORMAL, but not
more than one. An example of avalid statement is:

PLOT, SIN(A), /DEVICE

Keywords can be abbreviated to their shortest unique length. For example, the
XSTYLE keyword can be abbreviated to X ST because there are no other
keywordsin IDL that begin with XST. You cannot shorten XSTYLE to XS,
however, because there are other keywords that begin with XS, such as XSIZE.

IDL Reference Guide IDL Syntax

40 Chapter 1: Overview of IDL Syntax

Running the Example Code

Some of the code examples used in this manual are part of the IDL distribution.
Referenced files are located in the exanpl es/ doc subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described. See “!PATH” in
Appendix D of the IDL Reference Guide manual for information on IDL's path.

Running the Example Code IDL Reference Guide

Part |I: IDL Command
Reference

Chapter 2

Dot Commands

This section describes the following commands:

COMPILE ..ot 44
CONTINUE .o, 45
=] 46
FULL_RESET SESSION 47
GO 48
OUT oo 49
RESET SESSION ..., 50

IDL Reference Guide

RETURN i 53
RNEW ... 54
RUN ... 56
SKIP 58
STEP ... 60
STEPOVER e 61
JRACE ... 62

43

44

Chapter 2: Dot Commands

.COMPILE

The .COMPILE command compiles and saves procedures and programs in the same
manner as.RUN. If one or more filenames are specified, the procedures and functions
contained therein are compiled but not executed. If you enter this command at the
Command Line of the IDLDE and thefiles are not yet open, IDL opens the files
within Editor windows and compiles the procedures and functions contained therein.

See RESOLVE_ROUTINE for away to invoke the same operation from within an
IDL routine, and RESOLVE_ALL for away to automatically compile all user-written
or library functions called by all currently-compiled routines.

If the -f flag is specified, Fileis compiled from the source stored temporarily in
TempFile rather than on disk in Fileitself. This allows you to make changesto File
(inan IDLDE editor window, for example), store the modified source into the
temporary file (IDLDE does it automatically), compile, and test the changes without
overwriting the original code stored in File.

Note
.COMPILE isan executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.COMPILE [Filey, ..., File,]
.COMPILE -f File TempFile

See Also

.COMPILE

.RNEW, .RUN

IDL Reference Guide

Chapter 2: Dot Commands 45

.CONTINUE

The .CONTINUE command continues execution of a program that has stopped
because of an error, a stop statement, or a keyboard interrupt. IDL saves the location
of the beginning of the last statement executed before an error. If it is possible to
correct the error condition in the interactive mode, the offending statement can be re-
executed by entering .CONTINUE. After STOP statements, .CONTINUE continues
execution at the next statement. The .CONTINUE command can be abbreviated; for
example, .C. Execution of a program interrupted by typing Ctrl+C also can be
resumed at the point of interruption with the . CONTINUE command.

Note
.CONTINUE is an executive command. Executive commands can only be used at
the IDL command prompt, not in programs.

Syntax

.CONTINUE

IDL Reference Guide .CONTINUE

46 Chapter 2: Dot Commands
EDIT

The .EDIT command opens filesin IDL Editor windows when called from the
Command Line of the IDLDE. Note that filenames are separated by spaces, not
commeas.

Note

.EDIT is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

EDIT File, [File, ... File,]

.EDIT IDL Reference Guide

Chapter 2: Dot Commands 47

FULL_RESET SESSION

The .FULL_RESET_SESSION command does everything .RESET_SESSION does,
plus the following:

Note

Removes all system routinesinstalled viaLINKIMAGE or aDLM.
Removes all structure definitionsinstalled viaaDLM.

Removes all message blocks added by DLMs or by the DEFINE_MSGBLK or
DEFINE_MSGBLK_FROM_FILE routines.

Unloads all sharable libraries loaded into IDL via CALL_EXTERNAL,
LINKIMAGE, or aDLM.

Re-initializes all DLMsto their unloaded initial state.

FULL_RESET_ SESSION is an executive command. Executive commands can
only be used at the IDL command prompt, not in programs.

Syntax

FULL_RESET_SESSION

IDL Reference Guide .FULL_RESET_SESSION

48

Chapter 2: Dot Commands

.GO

.GO

The .GO command starts execution at the beginning of a previously-compiled main
program.

Note
.GO is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.GO

IDL Reference Guide

Chapter 2: Dot Commands 49

OUT

The .OUT command continues executing statements in the current program until it
returns.

Note
.OUT is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

OUT

IDL Reference Guide .OUT

50

Chapter 2: Dot Commands

.RESET_SESSION

The .RESET_SESSION command resets much of the state of an IDL session without
requiring the user to exit and restart the IDL session. After the reset is complete, the
startup file, if oneis specified, isrun.

The command performs the following actions in the reset:
* Returns current execution point to SMAINS$ (RETALL)
e Clearsthe path cache (see PATH_CACHE for details)

e Closesall files except the standard 3 units, the JOURNAL file (if any), and any
filesin use by graphics drivers

e Destroys or removes the following:

All local variablesin $SMAIN$
All widgets (exit handlers are not called)

All windows and pixmaps for the current window system graphics device
are closed (including all common blocks)

All cursors created with REGISTER_CURSOR
All handles

All breakpoints

All user-defined system variables

All pointer and object reference heap variables (object destructors are not
called)

All user-defined structure definitions
All user-defined object definitions

All compiled user functions and procedures, including the main program
(BMAINS), if any

Any memory segments created by SHMMAP

¢ Disables SHMDEBUG mode

.RESET_SESSION

IDL Reference Guide

Chapter 2: Dot Commands 51

* Resetsall system variables, including the graphics variables (| ORDER, |MAP,
IMOUSE, P, X, 1Y, 1Z). The following variables get their initial values from
IDL preferences:

ICPU IDIR

IEDIT_INPUT IERROR_STATE.MSG_PREFIX
IEXCEPT IHELP_PATH

IMORE IPATH

I'PROMPT IQUIET

Note
For more information on the preferences associated with these system
variables, see “IDL Preferences’ on page 5067.

* Resetsthe current direct-graphics device, which returns to the startup default,
based on the IDL_DEVICE preference.

* Resetsthe status of the path cache (enabled or disabled), based on the
IDL_PATH_CACHE_DISABLE preference.

* Resetsthe state of the IDL profiler module (for more information, see
“PROFILER” on page 1803).

The command does not do the following:
e The saved commands and output log are not erased.

» Graphicsdrivers are not reset to their full uninitialized state. However, all
windows and pixmaps for the current window system device are closed.

e Thefollowing files are not closed:
e Stdin (LUN 0)
e Stdout (LUN -1)
e Stderr (LUN -2)
* Thejournad file (' JOURNAL) if oneisopen
« Any filesin use by graphics drivers (e.g., PostScript)

IDL Reference Guide .RESET_SESSION

52 Chapter 2: Dot Commands

e Dynamically loaded graphics drivers (LINKIMAGE) are not removed, nor are
any dynamic sharable libraries containing such drivers, even if the samelibrary
was also used for another purpose such as CALL_EXTERNAL, LINKIMAGE
system routines, or DLMs. Seethe .FULL_RESET SESSION executive
command to unload dynamic libraries.

e Message blocksare not removed. Seethe .FULL_RESET SESSION executive
command to remove message blocks loaded by DLMs or created using the
DEFINE_MSGBLK or DEFINE_MSGBLK_FROM_FILE routines.

Note
.RESET_SESSION is an executive command. Executive commands can only be

used at the IDL command prompt, not in programs.

Syntax
.RESET_SESSION

See Also

FULL_RESET_SESSION

.RESET_SESSION IDL Reference Guide

Chapter 2: Dot Commands 53

.RETURN

The .RETURN command continues execution of a program until encountering a
RETURN statement. Thisis convenient for debugging programs since it allows the
whole program to run, stopping before returning to the next-higher program level so
you can examine local variables.

Also see the RETURN command.

Note
.RETURN is an executive command. Executive commands can only be used at the

IDL command prompt, not in programs.

Syntax

.RETURN

IDL Reference Guide .RETURN

54 Chapter 2: Dot Commands

.RNEW

The .RNEW command compiles and saves procedures and functions in the same
manner as .RUN. In addition, all variablesin the main program unit, except thosein
common blocks, are erased. The -T and -L filename switches have the same effect as
with .RUN.

Note
.RNEW is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.RNEW [Filey, ..., Filey]

Tosavelisting in afile:

.RNEW -L ListFilelisFile [, Filey, ..., File,]
To display listing on screen:

.RNEW -T File [, Filey, ..., File]

Example
Some statements using the .RUN and .RNEW commands are shown below.
Statement Description

. RUN Accept a program from the
keyboard. Retain the present
variables.

.RUN nyfile Compilethefilenyfil e. pro.
If it isnot found in the current
directory, try to find it in the
directory search path.

Table 2-1: Examples using .RUN and .RNEW

.RNEW IDL Reference Guide

Chapter 2: Dot Commands 55

Statement Description

.RUN -T A B C Compilethefilesa. pro,
b. proandc. pro. Listthefiles
on the terminal.

.RNEW-L nyfile.lis nyfile, yourfile | Eraseal variablesand compile
thefilesnyfil e. proand
yourfile. pro. Producea
listingonnyfile.lis.

Table 2-1: Examples using .RUN and .RNEW (Continued)
See Also

.COMPILE, .RUN

IDL Reference Guide .RNEW

56

.RUN

Chapter 2: Dot Commands

The .RUN command compiles procedures, functions, and/or main programs in
memory. Main programs are executed immediately. The command can be followed
by alist of filesto be compiled. Filenames are separated by blanks, tabs, or commas.

If afile specification isincluded in the command, IDL searchesfor thefilefirstin the
current directory, then in the directories specified by the system variable |PATH. See
“Creating $SMAINS$ Programs” in Chapter 2 of the Building IDL Applications manual
for more information on IDL’s search strategy.

If amain program unit is encountered, execution of the program will begin after al
files have been read if there were no errors. The values of all of the variables are
retained. If thefileisn’t found, input is accepted from the keyboard until a complete
program unit is entered.

Files containing IDL procedures, programs, and functions are assumed to have the
file extension (suffix) . pr o. Files created with the SAVE procedure are assumed to
have the extension . sav. See Chapter 2, “ Creating and Running Programsin IDL” in
the Building IDL Applications manual for further information.

Note
.RUN is an executive command. Executive commands can only be used at the IDL

command prompt, not in programs.

Syntax

.RUN

.RUN [Filey, ..., Filey]

Tosaveligting in afile:

.RUN -L ListFilelisFile, [, Filey, ..., File,]
To display listing on screen:

.RUN -T File [, Filey, ..., File,]

Note
Subsequent callsto .RUN compile the procedure again.

IDL Reference Guide

Chapter 2: Dot Commands 57

Using .RUN to Make Program Listings

The command arguments -T for terminal listing or -L filename for listing to a named
file can appear after the command name and before the program filenames to produce
anumbered program listing directed to the terminal or to afile.

For instance, to see alisting on the screen as aresult of compiling a procedure
contained in afile named anal yze. pr o, use the following command:

.RUN -T anal yze

To compile the same procedure and save the listing in afile named anal yze. | i s,
use the following command:

.RUN -L analyze.lis analyze

In listings produced by IDL, the line number of each statement is printed at the left
margin. This number isthe same as that printed in IDL error statements, simplifying
location of the statement causing the error.

Note
If the compiled file contains more than one procedure or function, line numberingis
reset to “1” each time the end of a program segment is detected.

Each level of block nesting isindented four spaces to the right of the preceding block
level to improve the legibility of the program’s structure.

See Also

.COMPILE, .RNEW

IDL Reference Guide .RUN

58

SKIP

.SKIP

Chapter 2: Dot Commands

The .SKIP command skips one or more statements. It is useful for moving past a
program statement that caused an error. If the optional argument n is present, it gives
the number of statements to skip; otherwise, asingle statement is skipped.

Note that .SKIP does not execute or evaluate the code it is skipping. Rather, it
arbitrarily alters the current program counter to the nth physical statement following
the current point. This has implications that may not be obvious on initial
consideration:

e .SKIP does not skip into acalled routine.

e .SKIP movesto the nth physical statement following the current program
location. This may not be the statement that execution would have actually
have moved to if you had allowed the program to run normally.

« Arbitrarily moving the program counter in thisway may leave your programin
an unrunnable state, depending on resulting state of the local variables and the
statements that the newly positioned program counter attempts to execute next.

In contrast, the .STEP executive command has none of the above drawbacks and can
be used instead in many situations. The advantage of .SKIP over .STEPisthat .SKIP
can move past statements that .STEP cannot, such as:

* Statements with errors that cause execution to halt.
« Infinite loops, and similar logic errors.

For example, consider the following program segment:

READF, 1, XXX,

If the OPENR statement fails because the specified file does not exist, program
execution will halt with the OPENR statement as the current statement. Execution
can not be resumed with the executive command . CONTINUE because it attemptsto
re-execute the offending OPENR statement, causing the same error. The remainder of
the program can be executed by entering .SKIP, which skips over theincorrect OPEN
Statement.

Note
.SKIP is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

IDL Reference Guide

Chapter 2: Dot Commands 59

Syntax

SKIP[n]

IDL Reference Guide .SKIP

60

STEP

Chapter 2: Dot Commands

The .STEP command executes one or more statements in the current program starting
at the current position, stops, and returns control to the interactive mode. This
command is useful in debugging programs. The optional argument n indicates the
number of statements to execute. If n is omitted, a single statement is executed.
Note

.STEP is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

STEP[n] or .S[n]

.STEP IDL Reference Guide

Chapter 2: Dot Commands 61

STEPOVER

The .STEPOVER command executes one or more statements in the current program
starting at the current position, stops, and returns control to the interactive mode.
Unlike .STEP, if .STEPOV ER executes a statement that calls another routine, the
called routine runs until it ends before control returns to interactive mode. That is, a
statement calling another routine is treated as a single statement.

The optional argument n indicates the number of statements to execute. If nis
omitted, a single statement (or called routine) is executed.

Note
.STEPOVER is an executive command. Executive commands can only be used at
the IDL command prompt, not in programs.

Syntax

STEPOVER [n] or .SO [n]

IDL Reference Guide .STEPOVER

62 Chapter 2: Dot Commands

.TRACE

The .TRACE command continues execution of aprogram that has stopped because of
an error, a stop statement, or akeyboard interrupt.

Note
.TRACE is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.TRACE

.TRACE IDL Reference Guide

Chapter 3

Procedures and
Functions

63

64

Chapter 3: Procedures and Functions

A_CORRELATE

The A_CORRELATE function computes the autocorrelation Px(L) or autocovariance
Rx(L) of a sample population X as afunction of the lag L.

N-L-1
D =X =%)
P(L) = Py(-L) = K=0

N-1
z (Xk—)_()z
k=0

N-L-1
R(L) = Ry(-L) = £ 3 (=R, %)
k=0

where x isthe mean of the sample population X = (Xg, X1, Xp, -+ , XN-1)-

Note
Thisroutineis primarily designed for use in 1-D time-series analysis. The meanis
subtracted before correlating. For image processing, methods based on FFT should
be used instead if more than afew tens of points exist. For example:

Function AutoCorrel ate, X

Tenmp = FFT(X,-1)

RETURN, FFT(Tenp * CONJ(Tenp), 1)
END

Thisroutineiswritten in the IDL language. Its source code can be found in the file
a_correl ate. prointheli b subdirectory of the IDL distribution.

Syntax

Result = A_CORRELATE(X, Lag [, /COVARIANCE] [, /DOUBLE])

A CORRELATE IDL Reference Guide

Chapter 3: Procedures and Functions 65

Arguments

X
An n-element integer, single-, or double-precision floating-point vector.
Lag

An n-element integer vector in the interval [-(n-2), (n-2)], specifying the signed
distances between indexed elements of X.

Keywords
COVARIANCE

Set this keyword to compute the sample autocovariance rather than the sample
autocorrelation.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

Define an n-el enent sanpl e popul ati on:
X=13.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
; Conpute the autocorrelation of X for LAG=-3, 0, 1, 3, 4, 8:
lag = [-3, 0, 1, 3, 4, 8]
result = A CORRELATE(X, | ag)
PRI NT, result

IDL prints:
0.0146185 1.00000 0.810879 0.0146185 -0.325279 -0.151684

Version History

4.0 Introduced

See Also

CORRELATE, C_CORRELATE, M_CORRELATE, P CORRELATE,
R_CORRELATE, “Correlation Analysis’ in Chapter 12 of the Using IDL manual

IDL Reference Guide A _CORRELATE

66 Chapter 3: Procedures and Functions

ABS

The ABS function returns the absolute value of its argument.
Syntax

Result = ABS(X)
Return Value

Returns the absolute value of its argument.
Arguments

X

The value for which the absolute value is desired. If X is of complex type, ABS
returns the magnitude of the complex number:

J/Real2 + Imaginary?

If X isof complex type, theresult isreturned as the corresponding floating point type.
For all other types, the result hasthe sametype as X. If X isan array, the result hasthe
same structure, with each element containing the absolute value of the corresponding
element of X.

ABS applied to any of the unsigned integer types results in the unaltered value of X
being returned.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for a singleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

ABS IDL Reference Guide

Chapter 3: Procedures and Functions 67

Examples

To print the absolute value of -25, enter:
PRI NT, ABS(-25)

IDL prints:
25

Version History

Original Introduced

IDL Reference Guide ABS

68 Chapter 3: Procedures and Functions

ACOS

The ACOS function returns the angle, expressed in radians, whose cosineis X (i.e.,
the arc-cosine). For real input, the range of ACOS is between 0 and .

For input of a complex number, Z = X +iY, the complex arccosineis given by,
acos(Z) = acos(B) - i dog(A + sqrt(A2- 1)) if Y >=0
acos(Z) = acos(B) + i alog(A + sqrt(A%- 1)) if Y <0
where
A =05sgrt((X + 1)2+Y?) + 0.5 sgrt((X - 1)% + Y?)
B =05sgrt((X + 1)2+Y?) - 0.5 sgrt((X - 1)° + Y?)

The separation of the two formulasat Y = 0 takes into account the branch-cut
discontinuity along the real axis from -co to -1 and +1 to +oo, and ensures that
cos(acos(2)) isequal to Z. For reference, see formulas 4.4.37-39 in Abramowitz, M.
and Stegun, 1.A., 1964: Handbook of Mathematical Functions (Washington: National
Bureau of Standards).

Syntax
Result = ACOS(X)
Return Value
Returns the angle, expressed in radians, whose cosineis X (i.e., the arc-cosine).
Arguments
X

The cosine of the desired angle. For real input, X should beintherange-1to +1. If X
is double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results. If X
isan array, the result has the same structure, with each element containing the arc-
cosine of the corresponding element of X.

ACOS IDL Reference Guide

Chapter 3: Procedures and Functions 69

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Find the angle whose cosineis 0.707 and print the result in degrees by entering:

PRI NT, 180/! Pl * ACOS(0. 707)
IDL prints:
45. 0086

Find the complex arccosine of 2 + i and print the result by entering:

PRI NT, ACOS(COWPLEX(2, 1))
I DL prints:
(0. 507356, -1.46935)

See the ATAN function for an example of visualizing the complex arccosine.

Version History

Original Introduced

See Also

COS, COSH, ASIN, SIN, SINH, ATAN, TAN, TANH

IDL Reference Guide ACOS

70 Chapter 3: Procedures and Functions

ADAPT HIST EQUAL

The ADAPT_HIST_EQUAL function performs adaptive histogram equalization, a
form of automatic image contrast enhancement. The algorithm is described in Pizer
et. d., “Adaptive Histogram Equalization and its Variations.”, Computer Vision,
Graphics and Image Processing, 39:355-368. Adaptive histogram equalization
involves applying contrast enhancement based on the local region surrounding each
pixel. Each pixel is mapped to an intensity proportional to its rank within the
surrounding neighborhood. This method of automatic contrast enhancement has
proven to be broadly applicable to a wide range of images and to have demonstrated
effectiveness.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
adapt _hi st _equal . prointhel i b subdirectory of the IDL distribution.

Syntax

Result = ADAPT_HIST_EQUAL (Image [, CLIP=value] [, FCN=vector]
[, NREGIONS=nregions] [, TOP=valug])

Return Value

The result of the function is a byte image with the same dimensions as the input
image parameter.

Arguments

Image

A two-dimensional array representing the image for which adaptive histogram
equalization isto be performed. This parameter isinterpreted as unsigned 8-bit data,
so be sure that the input values are properly scaled into the range of 0 to 255.

Keywords
CLIP

Set this keyword to a nonzero value to clip the histogram by limiting its slope to the
given CLIP value, thereby limiting contrast. For example, if CLIP is set to 3, the
slope of the histogram is limited to 3. By default, the slope and/or contrast is not

ADAPT_HIST _EQUAL IDL Reference Guide

Chapter 3: Procedures and Functions 71

limited. Noise over-enhancement in nearly homogeneous regions is reduced by
setting this parameter to values larger than 1.0.

FCN

Set this keyword to the desired cumulative probability distribution function in the
form of a 256 element vector. If omitted, alinear ramp, which yields equal
probability binsresults. Thisfunction islater normalized, so magnitude is
inconsequential, though should increase monotonically.

NREGIONS

Set this keyword to the size of the overlapped tiles, as afraction of the largest
dimensions of theimage size. The default is 12, which makes each tile 1/12 the size
of the largest image dimension.

TOP
Set this keyword to the maximum value of the scaled output array. The default is 255.

Examples

The following code snippet reads a datafile in the exanpl es/ dat a subdirectory of
the IDL distribution containing a cerebral angiogram, and then displays both the
original image and the adaptive histogram equalized image:

OPENR, 1, FILEPATH('cereb.dat', $
SUBDI RECTORY=[' exanpl es','data'])

;lmage size = 512 x 512
a = BYTARR(512, 512, /NQZERO)

‘Read it
READU, 1, a
CLCSE, 1

Reduce size of image for conparison
a = CONGRI D(a, 256, 256)

; Show ori gi nal
TVSCL, a, O

; Show processed
TV, ADAPT_H ST _EQUAL(a, TOP=!D. TABLE SIZE-1), 1

IDL Reference Guide ADAPT_HIST_EQUAL

72

Note

Chapter 3: Procedures and Functions

Also see “Working with Histograms’ in Chapter 8 of the Image Processing in IDL

manual.

Version History

53

Introduced

See Also

H_EQ CT,H_EQ INT, HIST_2D, HIST_EQUAL, HISTOGRAM

ADAPT_HIST_EQUAL

IDL Reference Guide

Chapter 3: Procedures and Functions 73

ALOG

The ALOG function returns the natural logarithm of X.

For input of acomplex number, Z = X +iY, the complex number can be rewritten as
Z = Rexp(i0), where R = abs(Z) and 6 = atan(y,x). The complex natural log isthen
given by,

aog(Z) =aog(R) +i6

In the above formula, the use of the two-argument arctangent separates the solutions
at Y =0 and takesinto account the branch-cut discontinuity along the real axis from -
o to 0, and ensures that exp(alog(2)) is equal to Z. For reference, see formulas 4.4.1-
3in Abramowitz, M. and Stegun, 1.A., 1964. Handbook of Mathematical Functions
(Washington: National Bureau of Standards).

Syntax
Result = ALOG(X)
Return Value
Returns the natural logarithm of X.
Arguments
X

Thevalue for which the natural log isdesired. For real input, X should be greater than
or equal to zero. If X isdouble-precision floating or complex, theresult is of the same
type. All other types are converted to single-precision floating-point and yield
floating-point results. If X isan array, the result has the same structure, with each
element containing the natural log of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,

IDL Reference Guide ALOG

74 Chapter 3: Procedures and Functions

TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for detalils.

Examples

Find the natural logarithm of 2 and print the result by entering:

PRI NT, ALOE 2)
IDL prints:
0. 693147

Find the complex natural log of sqrt(2) + i sqrt(2) and print the result by entering:

PRI NT, ALOZ COWVPLEX(sqrt(2), sqrt(2)))
IDL prints:
(0. 693147, 0. 785398)

Note
Thereal part of theresult isjust ALOG(2) and the imaginary part givesthe angle (in
radians) of the complex number relative to the real axis.

See the ATAN function for an example of visualizing the complex natural log.

Version History

Original Introduced

See Also

ALOG10, ATAN

ALOG IDL Reference Guide

Chapter 3: Procedures and Functions 75

ALOG10

The ALOG10 function returns the logarithm to the base 10 of X.

For input of acomplex number, Z = X +iY, the complex number can be rewritten as
Z = Rexp(iq), where R = abs(Z) and q = atan(y,x). The complex log base 10 is then
given by,

aogl0(Z) = aoglO(R) + i g/alog(10)

In the above formula, the use of the two-argument arctangent separates the solutions
a Y =0 and takesinto account the branch-cut discontinuity along the real axis from -
o to 0, and ensures that 10*(alog10(Z)) isequal to Z. For reference, see formulas
4.4.1-3 in Abramowitz, M. and Stegun, |.A., 1964. Handbook of Mathematical
Functions (Washington: National Bureau of Standards).

Syntax

Result = ALOG10(X)
Return Value

Returns the logarithm to the base 10 of X.
Arguments

X

The value for which the base 10 log is desired. For real input, X should be greater
than or equal to zero. If X isdouble-precision floating or complex, the result is of the
same type. All other types are converted to single-precision floating-point and yield
floating-point results. If X isan array, the result has the same structure, with each
element containing the base 10 log of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,

IDL Reference Guide ALOG10

76 Chapter 3: Procedures and Functions

TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for detalils.

Examples

Find the base 10 logarithm of 100 and print the result by entering:

PRI NT, ALOGL0(100)
IDL prints:
2.00000

See the ATAN function for an example of visualizing the complex logarithm.

Version History

Original Introduced

See Also

ALOG, ATAN

ALOG10 IDL Reference Guide

Chapter 3: Procedures and Functions 77

AMOEBA

The AMOEBA function performs multidimensional minimization of afunction
Func(x), where x is an n-dimensional vector, using the downhill simplex method of
Nelder and Mead, 1965, Computer Journal, Vol 7, pp 308-313.

The downhill simplex method is not as efficient as Powell’s method, and usually
requires more function evaluations. However, the smplex method requires only
function evaluations—not derivatives—and may be more reliable than Powell’s
method.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
anoeba. pro inthel i b subdirectory of the IDL distribution. AMOEBA is based on
the routine anpeba described in section 10.4 of Numerical Recipesin C: The Art of
Scientific Computing (Second Edition), published by Cambridge University Press,
and is used by permission.

Syntax

Result = AMOEBA(Ftol [, FUNCTION_NAME=string]
[, FUNCTION_VALUE=variable] [, NCALLS=value] [, NMAX=value]
[, PO=vector, SCALE=vector |, SIMPLEX=array])

Return Value

If the minimum isfound, AMOEBA returns an n-element vector corresponding to the
function’s minimum value. If a minimum within the given tolerance is not found
within the specified number of iterations, AMOEBA returns a scalar value of -1.
Results are returned with the same precision (single- or double-precision floating-
point) asisreturned by the user-supplied function to be minimized.

Arguments

Ftol

The fractional tolerance to be achieved in the function value—that is, the fractional
decrease in the function value in the terminating step. If the function you supply
returns a single-precision result, Ftol should never be less than your machine's
floating-point precision—the value contained in the EPS field of the structure
returned by the MACHAR function. If the function you supply returns a double-
precision floating-point value, Ftol should not be less than your machine’ double-
precision floating-point precision. See MACHAR for details.

IDL Reference Guide AMOEBA

78

Chapter 3: Procedures and Functions

Keywords

AMOEBA

FUNCTION_NAME

Set this keyword equal to a string containing the name of the function to be
minimized. If this keyword is omitted, AMOEBA assumes that an IDL function
named “FUNC” isto be used.

The function to be minimized must be written as an IDL function and compiled prior
to calling AMOEBA.. This function must accept an n-element vector asits only
parameter and return a scalar single- or double precision floating-point value as its
result.

See the Example section below for an example function.
FUNCTION_ VALUE

Set this keyword equal to a named variable that will contain an (n+1)-element vector
of the function values at the simplex points. The first element contains the function
minimum.

NCALLS

Set this keyword equal to a named variable that will contain a count of the number of
times the function was eval uated.

NMAX

Set this keyword equal to a scalar value specifying the maximum number of function
evaluations allowed before terminating. The default is 5000.

PO

Set this keyword equal to an n-element single- or double-precision floating-point
vector specifying the initial starting point. Note that if you specify PO, you must also
specify SCALE.

For example, in a 3-dimensional problem, if theinitial guessis the point [0,0,0], and
you know that the function’s minimum value occurs in the interval:

-10 < X[0] < 10, -100 < X[1] < 100, -200 < X[(2] < 200,
specify: PO=[0,0,0] and SCALE=[10, 100, 200].
Alternately, you can omit PO and SCALE and specify SIMPLEX.

IDL Reference Guide

Chapter 3: Procedures and Functions 79

SCALE

Set this keyword equal to a scalar or n-element vector containing the problem’s
characteristic length scale for each dimension. SCALE is used with PO to form an
initial (n+1) point simplex. If all dimensions have the same scale, set SCALE equal to
ascaar.

If SCALE is specified as a scalar, the function’s minimum lies within a distance of
SCALE from PO. If SCALE isan N-dimensional vector, the function's minimum lies
within the Ndim+1 simplex with the vertices PO, PO + [1,0,...,0] * SCALE, PO +
[0,1,0,...,0] * SCALE, ..., and PO+[0,0,...,1] * SCALE.

SIMPLEX

Set thiskeyword equal to an n by n+1 single- or double-precision floating-point array
containing the starting simplex. After AMOEBA has returned, the SIMPLEX array
contains the simplex enclosing the function minimum. The first point in the array,
SIMPLEX[*,0], corresponds to the function’s minimum. This keyword isignored if
the PO and SCALE keywords are set.

Examples

Use AMOEBA to find the slope and intercept of a straight line that fits a given set of
points, minimizing the maximum error. The function to be minimized (FUNC, in this
case) returns the maximum error, given p[0] = intercept, and p[1] = slope.

First define the function FUNC
FUNCTI ON FUNC, P
COMMON FUNC XY, X, Y
RETURN, MAX(ABS(Y - (P[0] + P[1] * X)))
END

; Put the data points into a common bl ock so they are accessible to
; the function:
COMVON FUNC_XY, X, Y

Define the data points:

FI NDGEN(17) *5

[12.0, 24.3, 39.6, 51.0, 66.5 78.4, 92.7, 107.8, $
120.0, 135.5, 147.5, 161.0, 175.4, 187.4, 202.5, 215.4, 229.9]

; Call the function. Set the fractional tolerance to 1 part in
1075, the initial guess to [0,0], and specify that the m ni num
shoul d be found within a distance of 100 of that point:

R = AMOEBA(1. Oe-5, SCALE=1.0e2, PO = [0, 0], FUNCTI ON_VALUE=fval)

IDL Reference Guide AMOEBA

80 Chapter 3: Procedures and Functions

; Check for convergence:
IF N ELEMENTS(R) EQ 1 THEN MESSAGE, ' AMOEBA failed to converge'

Print results:
PRINT, 'Intercept, Slope:', r, $

"Function value (max error): ', fval[0]
IDL prints:
I ntercept, Slope: 11. 4100 2.72800
Functi on val ue: 1. 33000

Version History

5.0 Introduced

See Also

DFPMIN, POWELL, SIMPLEX

AMOEBA IDL Reference Guide

Chapter 3: Procedures and Functions 81

ANNOTATE

The ANNOTATE procedure starts an IDL widget program that allows you to
interactively annotate images and plots with text and drawings. Drawing objects
include lines, arrows, polygons, rectangles, circles, and ellipses. Annotation files can
be saved and restored, and annotated displays can be written to TIFF or PostScript
files. The Annotation widget will work on any IDL graphics window or draw widget.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
annot at e. pro inthel i b subdirectory of the IDL distribution.

Using the Annotation Widget

Before calling the Annotation widget, plot or display your datain an IDL graphics
window or draw widget. Unless you specify otherwise (using the DRAWABLE or
WINDOW keywords), annotations will be made in the current graphics window.

For information on using the Annotation widget, click on the widget's “Help” button.
Syntax

ANNOTATE [, COLOR_INDICES=array] [, DRAWABLE=widget_id |,
WINDOW=index] [, LOAD_FILE=filename] [, /TEK_COLORS]

Arguments
None.
Keywords
COLOR_INDICES

An array of color indices from which the user can choose colors. For example, to
allow the user to choose 10 colors, spread evenly over the available indices, set the
keyword as follows:

COLOR | NDI CES = I NDGEN(10) * (!D.N_COLORS-1) / 9

If neither TEK_COLORS or COLOR_INDICES are specified, the default isto load
10 colors, evenly distributed over those available.

IDL Reference Guide ANNOTATE

82 Chapter 3: Procedures and Functions

DRAWABLE

The widget 1D of the draw widget for the annotations. Do not set both DRAWABLE
and WINDOW. If neither WINDOW or DRAWABLE are specified, the current
window is used.

LOAD_FILE
The name of an annotation format file to load after initialization.

TEK_COLORS

Set this keyword and the Tektronix color table is loaded starting at color index
TEK_COLORS(0), with TEK_COLORS(1) color indices. The Tektronix color table
contains up to 32 distinct colors suitable for graphics. If neither TEK_COLORS or
COLOR_INDICES are specified, the default is to load 10 colors, evenly distributed
over those available.

WINDOW

The window index number of the window to receive the annotations. Do not set both
DRAWABLE and WINDOW. If neither WINDOW or DRAWABLE are specified, the
current window is used.

Examples

; Qutput an inmmge in the current w ndow
TVSCL, HANNI NG 300, 200)

; Annotate it:

ANNOTATE

Version History

Pre4.0 Introduced

See Also

PLOTS, XYOUTS

ANNOTATE IDL Reference Guide

Chapter 3: Procedures and Functions 83

APP_USER DIR

The APP_USER_DIR function provides accessto the IDL application user directory.
The application user directory is alocation where IDL, and applications written in
IDL, can store user-specific data that will persist between IDL sessions. For example,
the IDL iTools store user-specified preferences, styles, and macrosin the application
user directory.

The application user directory is created automatically by IDL as a subdirectory
(named . i dI) of the user’s home directory. (For additional information on the
location of the user’s home directory on different platforms, see “HOME” in Chapter
1, “Environment Variables Used by IDL” in the Using IDL manual.)

To prevent unrelated applications from encountering each other’sfiles, the . i dI
directory is organized into subdirectories with names specified by the application
author. For example, files used by applications created by RSI are stored in
subdirectories of the . i dl directory namedrsi andi dl . Inside each author's
subdirectory, files are organized by application and (optionally) by a combination of
attributes of the IDL version that creates the directory.

Note
The organization of the . i dl directory is opague to both users and authors of DL
applications. Application authors are expected to manage the directory exclusively
using the APP_USER_DIR function, and application users generally do not need to
manually modify the filesit contains.

APP_USER_DIR simplifies cross-platform application development by providing a
well-defined location for IDL applications to store their resource files, regardless of
the platform or version of IDL. The uniform organization it enforcesis also a benefit
for IDL users, since it makesit easier for them to understand the meaning and
importance of the filesfound in their . i dI directory.

Directories created by APP_USER_DIR have the following features:

« Each author of IDL applications has a unique area underneath the . i dI
directory. Different authors do not share space with each other, or with RSI.

« By default, an application directory is shared by all instances of the
application. The application author can use RESTRICT keywords to specify
that the directory only be used by a specified version of the application, or
when running on a version of IDL with specified attributes such as release,
operating system, hardware platform, etc. See “RESTRICT Keywords’ on
page 88 for additional details.

IDL Reference Guide APP_USER_DIR

84

APP_USER_DIR

Chapter 3: Procedures and Functions

A README fileisautomatically generated for each author and application
directory, following a standard format. The application author is required to
supply the body text for the application README file. (Text for the author
README fileis optional, but recommended.) The text is expected to explain
the purpose of the directory, and supply contact information for the author.
Each README file has a version associated with it, allowing

APP_USER DIR to automatically update the file as necessary.

APP_USER DIR performs the following operations, in order:

1
2.

If the specified author directory does not exigt, it is created.

If the specified author directory does not have a standard README file, itis
created. If thereis an existing README file with aversion number that is
lower than the specified number, the file is replaced.

If the specified application subdirectory does not exist within the author
directory, it is created.

If the specified application directory does not have astandard README file, it
is created. If there is an existing README file with aversion number that is
lower than the specified number, the file is replaced.

The path to the application directory is returned as the value of the
APP_USER DIR function.

Other than the README file, the contents of an application directory are entirely up
to the application author. The APP_USER_DIR function does not manage the
content, only itslocation. The FILEPATH function can be used to construct filenames
within the application directory, and IDL’'s many input/output and file manipulation
routines can be used to create and manage application specific content within it.

Syntax

Result = APP_USER_DIR(Author Dirname, Author Desc, AppDirname, AppDesc,
AppReadmeText, AppReadme\Version
[, AUTHOR_README_TEXT=string array]
[, AUTHOR_README_VERSION=integer]
[, RESTRICT_APPVERSION=string] [, /RESTRICT_ARCH]
[, /RESTRICT_FAMILY |/RESTRICT_OS]
[,/RESTRICT_FILE_OFFSET_BITS] [, /RESTRICT_IDL_RELEASE]
[,/RESTRICT_MEMORY_BITS])

IDL Reference Guide

Chapter 3: Procedures and Functions 85

Return Value

Returns a string containing the path to the directory to be used by the calling
application.

Note
The directory and all associated README files are created if they do not exist. If
the README files exit, they will be updated if the values of AppReadme\ersion
and the AUTHOR_README_VERSION keyword are greater than those of the
existing README files.

Arguments

AuthorDirname

A string specifying the name of the author directory to be used by the calling
application. The author directory namesr si andi dl arereserved for use by IDL and
IDL applications created by RSI. Other authors should be careful to pick aunique
name unlikely to conflict with others. (See“Advicefor Library Authors” in Chapter 6
of the Building IDL Applications manual for advice on selecting a unique prefix for a
library; the same advice applies when selecting an author directory name.)

In choosing Author Dirname, be aware of the following:

1. AuthorDirnameis case insensitive, regardless of the operating system
platform. APP_USER _DIR will convert the nameto lower case before
creating the directory or returning its path string.

2. You should attempt to keep the name short, to minimize the chance that the full
directory name s longer than the maximum supported length on the current

platform.
3. Thefollowing characters are automatically converted to underscores (_) when
creating thedirectory name: -) (. : > <aswell asspace and tab.
AuthorDesc

A string containing a one-line description of the author in human-readable form. This
string is used for the header of the README file within the author directory. For

example, the AuthorDesc for IDL applications written by RSl is “Research Systems,
Inc.”

IDL Reference Guide APP_USER_DIR

86 Chapter 3: Procedures and Functions
AppDirname

A string specifying the name of the application directory to be used by the calling

application. For example, the IDL iTools application uses the application directory
name “itools’.

Note

APP_USER_DIR modifies the AppDirname string you specify in the same way it
modifies the Author Dirname string. See AuthorDirname, above.

AppDesc

A string giving a brief description of the application in human-readable form. This
string is used for the header of the README file within the application directory. For

example, the AppDesc for the IDL iTools application is“IDL Intelligent Tools
(iTools)".

AppReadmeText

A string or string array containing the text used as the body of the README file
within the application directory. The README text is for the benefit of IDL users

who are trying to understand what the directory isfor, and is expected to supply the
following information:

e Theidentity of the author, and author contact information.
e A brief description of what the application is, and what it does.

* Any specia rules governing if and when the user is allowed to delete the
directory and its contents.

AppReadmeVersion

An integer specifying the version number to be associated with the README file.
AppReadme\Version must be greater than zero.

Initially, AppReadmeVersion should be set to one. Every time you modify the text
supplied as the AppReadmeText argument, you should increment the value of
AppReadmeVersion by one. APP_USER_DIR uses thisinformation to ensure that
existing README files are automatically updated to the latest version.

APP_USER_DIR IDL Reference Guide

Chapter 3: Procedures and Functions 87

Note
The application README file version is different from, and unrelated to, the
application version (as specified viathe RESTRICT_APPVERSION keyword). The
README version applies only to the contents of the README file. You might
want to change the text in a README file without changing the version of the
application; perhaps to clarify existing information or update your contact
information.

Keywords

AUTHOR_README_TEXT

Set the AUTHOR_README_TEXT keyword equal to a string or string array to
supply README text for the author directory. Authors with multiple IDL
applications should consider providing application-independent contact information
here.

Note
APP_USER DIR requires you to supply text for the body of the application
directory README file. You are not required to supply text for the author directory
README file, but supplying such text is strongly recommended.

If you include this keyword, use the AUTHOR_README_VERSION keyword to
supply aversion number for the README file.

AUTHOR_README_VERSION

Set this keyword equal to an integer that specifies the version number for the author
README file. The specified value must be greater than zero.

Initially, AUTHOR_README_VERSION should be set equal to one. Every time
you modify the text supplied as the AUTHOR_README_TEXT keyword, you
should increment the value of AUTHOR_README_VERSION by one.
APP_USER DIR usesthisinformation to ensure that existing author README files
are automatically updated to the latest version. If AUTHOR_README_VERSION
is not supplied, a default version of 1 isused. However, RSl recommends that you
explicitly specify this keyword whenever AUTHOR_README_TEXT is used.

IDL Reference Guide APP_USER_DIR

88 Chapter 3: Procedures and Functions

Note
The author README file version is different from, and unrelated to, the application
version (as specified viathe RESTRICT_APPVERSION keyword). The README
version applies only to the contents of the README file. You might want to change
the text in a README file without changing the version of the application; perhaps
to clarify existing information or update your contact information.

RESTRICT Keywords

By default, APP_USER_DIR creates an application user directory that will be shared
by all instances of the application. You can use RESTRICT keywords to specify that
the directory only be used by a specified version of the application, or when running
on aversion of IDL with specified attributes such as release, operating system,
hardware platform, etc. The RESTRICT keywords allow you to ensure that instances
of your application running in different IDL, hardware, and operating system
environments store their user data separately, when appropriate.

In deciding whether to use the RESTRICT keywords for your application, you should
consider the following issues:

Network Installations

In many environments, user home directories are kept on network accessible devices,
and are mounted on many different systems. These systems may be running different
IDL versions, different operating systems, and different hardware.

The advantages of the networked home directory are easier system administration,
and the fact that no matter which computer you use, your files are always available
without the need to copy them between systems. APP_USER_DIR is designed to
work in such an environment. Concerning yourself with such heterogeneous network
environments may seem like overkill if you are using a system with its own dedicated
home directory, but you should remember that your users may be using a highly
networked environment, and as such your application needs to take these issuesinto
consideration.

Application Version Compatibility

Experience shows that many application authors do not plan adequately for cross-
version compatibility. Thislack of planning may cause few problems at first, but as
new versions of the application are released, incompatibilities surface. Consider the
following when designing your application to simplify later upgrades:

1. Canyouimaginethat afuture version of your application might want to
structureits datain a different way, or that changes for a new version might

APP_USER_DIR IDL Reference Guide

Chapter 3: Procedures and Functions 89

confuse older versions that also use the same data? If so, you should specify
the RESTRICT_APPVERSION keyword to give your application aversion. If
in doubt, specify aversion of ‘1.0'. You will never be required to change the
version number, but you will have the flexibility to do so if your application
user directories include application version information.

2. Carefully consider how platform-specific your application is, and apply any of
the other RESTRICT keywords that are necessary.

3. If versioning isimportant to your application, you will eventually face the
situation in which your users are upgrading to a new version. In such cases,
you may want to offer them the option of migrating their configuration data
from the older version. The APP_USER_DIR_QUERY function can be used
to locate the application user directories for these older versions. Note that
your application data must be designed in such away that such migrations are
possible. In particular, any versioning information needed to select the best
migration candidate must be present.

RESTRICT_APPVERSION

Set this keyword to a string specifying the application version. Different application
user directories will be created for different values of this keyword.

Note
The application version can be any arbitrary string. In choosing your version string,
be aware that the same rules and considerations described for the AppDirname
argument apply to RESTRICT_APPVERSION.

RESTRICT_ARCH

Set this keyword to specify that different application user directories be created when
your application runs on systems with different hardware architectures, asreported by
the 'VERSION.ARCH system variable field.

RESTRICT_FAMILY

Set this keyword to specify that different application user directories be created when
your application runs on systems running different operating system families, as
reported by the 'VERSION.OS_FAMILY system variable field.

Note
If RESTRICT_OS isalso specified, RESTRICT_FAMILY isignored and has no
effect.

IDL Reference Guide APP_USER_DIR

90 Chapter 3: Procedures and Functions

RESTRICT_FILE_OFFSET_BITS

Set this keyword to specify that different application user directories be created when
your application runs on versions of IDL that use adifferent number of file offset bits,
as reported by the 'VERSION.FILE OFFSET_BITS system variable field.

RESTRICT_IDL_RELEASE

Set this keyword to specify that different application user directories be created when
your application runs under different versions of IDL, as specified by the
I'VERSION.RELEASE system variable field.

RESTRICT_MEMORY_BITS

Set this keyword to specify that different application user directories be created when
your application runs on versions of IDL that use a different number of memory
address hits, as reported by the 'VERSION.MEMORY _BITS system variable field.

RESTRICT_OS

Set this keyword to specify that different application user directories be created when
your application runs on systems running different operating systems, as reported by
the 'VERSION.OS system variable field.

Examples

The following function demonstrates how APP_USER_DIR can be used efficiently
to create an application user directory for an IDL application supporting the
“Amazing” Grill System (AGS), a product of the fictional Acme Widgets, Inc. We
assume that each AGS application user directory should only be shared between
instances of the same version of the application that are running under the same
operating system family. The use of the RESTRICT keywords causes the AGS
software to create a different application user directory for each unique combination
of these two attributes. The rest of the application can call thisfunction as many times
asdesired. It ensures that the necessary directory exists on the first call, and then
simply returns the path string on subsequent calls:

FUNCTI ON acme_grill _config_dir
COVWMON acne_grill _comon, config_dir
I'F (N_ELEMENTS(config_dir) NE 1) THEN BEG N

Increment if author_readme_text is changed
aut hor _readnme_version =1

APP_USER_DIR IDL Reference Guide

Chapter 3: Procedures and Functions 91

aut hor _readne_text = $
["This is the user configuration directory for', $
"I DL based products from Acne Wdgets, Inc:', $
8
' Acnme Wdgets, Inc.', $
1234 Amazing Way', $
Gill Vvalley, Nv, 12345, $
USA', $
', $
" Thank you for using products from Acnme Wdgets, Inc.']

; Increment if app_readne_text is changed
app_readne_version =1

app_readne_text = $
['"This is the configuration directory for the', $
"Acnme "Amazing" Gill System It is used to', $

"renmenber grill settings in between grill', $
"invocations.', $

", $

"It is safe to renove this directory, as it', $

"will be recreated on demand. Note that all', $
"settings (e.g. snoke injection depth, juicitron', $
"angle, etc.) will revert to their default settings.', $
.08

" Thank you for using the Acne "Amazing" Gill System']
config_dir = APP_USER DI R(' acne', 'Acne Wdgets, Inc.', $

"acne_grill', 'The Acne "Amazing" Gill System, $
app_readne_text, app_readnme_version, $
AUTHOR _READVE TEXT=aut hor _readme_text, $
AUTHOR README VERSI ON=aut hor _readne_version, $
RESTRI CT_APPVERSI ON=' 1. 0', / RESTRI CT_FAM LY)

ENDI F

RETURN, config_dir

END

Version History

6.1 I ntroduced

IDL Reference Guide APP_USER_DIR

92 Chapter 3: Procedures and Functions

See Also

APP_USER DIR_QUERY, FILE_MKDIR, FILE_TEST, FILEPATH,
OPENR/OPENU/OPENW, 'VERSION system variable

APP_USER_DIR IDL Reference Guide

Chapter 3: Procedures and Functions 93

APP_USER DIR QUERY

The APP_USER DIR_QUERY function is used to locate existing application user
directories previously created by the APP_USER_DIR function. An IDL application
can use APP_USER DIR_QUERY to locate the directories that were used by other
(presumably older) versions of itself. A newly installed version can use this
information to migrate application settings or data from another version in order to
preserve the user’s customizations.

Touse APP_USER DIR_QUERY, your application should call it with the same
values of the AuthorDirname and AppDirname arguments, and the exact set of
RESTRICT keywords, used to call APP_USER_DIR. In this configuration,
APP_USER_DIR_QUERY will return the same application user directory returned
by APP_USER_DIR. To search for other related application user directories, use the
QUERY keywords to specify which of the attributes specified in the call to
APP_USER _DIR should be allowed to take on any value.

As an example, suppose your application creates user application directories that
depend on the version of the application and on the operating system in use. You
might want to locate all directories created for a specific application version,
regardless of the operating system in use when the directory was created.

Tip
The application user directory for the current system is always one of the values
returned by APP_USER_DIR_QUERY. In the common example of an application
that wants to migrate datafrom adifferent version, the path for the current systemis
not desired. Use the EXCLUDE_CURRENT keyword to suppressit from the
results.

Syntax

Result = APP_USER_DIR_QUERY (Author Dirname, AppDirname
[, COUNT=variable] [, /[EXCLUDE_CURRENT][, /QUERY_APPVERSION]
[, /QUERY_ARCH] [, /QUERY_FAMILY] [, /QUERY_FILE OFFSET BITS]
[,/QUERY _IDL_RELEASE] [, /QUERY_MEMORY_BITS] [, /QUERY_OS]
[RESTRICT Keywords])

IDL Reference Guide APP_USER_DIR_QUERY

94 Chapter 3: Procedures and Functions

Return Value

Returns a string array containing all application user directories that match the query
criteria. If no matching application user directories exist, anull scalar string is
returned.

Arguments

AuthorDirname

A string specifying the name of the author directory to be used by the calling
application. For APP_USER_DIR_QUERY to work correctly, Author Dirname must
be set to the same value used in the call to APP_USER DIR. See APP_USER DIR
for details.

AppDirname

A string specifying the name of the application directory to be used by the calling
application. For APP_USER_DIR_QUERY to work correctly, AppDirname must be
set to the same value used in the call to APP_USER _DIR. See APP_USER_DIR for
details.

Keywords
COUNT

Set this keyword equal to a named variable that will contain the number of matching
application user directories found. If no matching directories are found, the specified
variable will contain the value O (zero).

EXCLUDE_CURRENT

By default, APP_USER DIR_QUERY includesthe application user directory that
matches the current system (the directory that would be returned by APP_USER _DIR)
in Result. Set this keyword to exclude the directory returned by APP_USER_DIR
from the Result.

RESTRICT Keywords

APP_USER DIR_QUERY accepts the same RESTRICT keywords documented for
APP_USER DIR. For APP_USER _DIR_QUERY to work correctly, you must

APP_USER_DIR_QUERY IDL Reference Guide

Chapter 3: Procedures and Functions 95

specify the same RESTRICT keywords as were specified to APP_USER_DIR. See
the documentation for APP_USER_DIR for full details.

Thereis asubtle difference in the meaning of the RESTRICT keywords between
APP_USER DIR and APP_USER _DIR_QUERY. In the case of APP_USER DIR,
specifying one of the RESTRICT keywords causes IDL to create a directory whose
name incorporates information about the value of the specified attribute on the
current platform. In the case of APP_USER_DIR_QUERY, specifying one of the
RESTRICT keywords tells IDL that the directory name must contain information
about the specified attribute; if the corresponding QUERY keyword is also specified,
directory names that contain any value for the specified attribute will be matched.

QUERY Keywords

A minimally correct call to APP_USER DIR_QUERY consists of specifying the
same Author Dirname argument, AppDirname argument, and RESTRICT keywords
asthe corresponding call to APP_USER_DIR. Such acall will return asingle string
containing the path returned by APP_USER_DIR. Using APP_USER_DIR_QUERY
in this manner is not particularly interesting; in order to locate other application user
directories in addition to the one that applies to the current platform, you must add
one or more QUERY keywords.

Each QUERY keyword corresponds to one of the RESTRICT keywords. The
presence of a QUERY keyword tells APP_USER_DIR_QUERY to search for
application user directories that satisfy al of the RESTRICT keywords while
alowing any value for the attribute specified by the QUERY keyword.

QUERY_APPVERSION

Set this keyword to match application user directories that have any value for the
application version. This keyword is quietly ignored if the
RESTRICT_APPVERSION keyword is not set.

QUERY_ARCH

Set this keyword to match application user directories that have any value for the
hardware architecture. This keyword is quietly ignored if the RESTRICT_ARCH
keyword is not set.

QUERY_FAMILY

Set this keyword to match application user directories that have any value for the
operating system family. Thiskeyword isquietly ignored if the RESTRICT_FAMILY
keyword is not set.

IDL Reference Guide APP_USER_DIR_QUERY

96 Chapter 3: Procedures and Functions

QUERY_FILE_OFFSET _BITS

Set this keyword to match application user directories that have any value for the
number of bits used for file offsets. This keyword is quietly ignored if the
RESTRICT_FILE_OFFSET_BITS keyword is not set.

QUERY_IDL_RELEASE

Set this keyword to match application user directories that have any value for the IDL
version string. This keyword is quietly ignored if the RESTRICT _IDL_RELEASE
keyword is not set.

QUERY_MEMORY_BITS

Set this keyword to match application user directories that have any value for the
number of bits used for memory addresses. This keyword is quietly ignored if the
RESTRICT_MEMORY _BITS keyword is not set.

QUERY_OS

Set this keyword to match application user directories that have any value for the
operating system. This keyword is quietly ignored if the RESTRICT_OS keyword is
not set.

Example

In the discussion of the APP_USER_DIR function, we give the example of an IDL
application supporting the “Amazing” Grill System, a product of the fictional Acme
Widgets, Inc. The application user directory created for that application is dependent
on two attributes:

1. Application version (RESTRICT_APPVERSION)
2. Operating system family (RESTRICT_FAMILY)

When anew version of IDL runsthis application for the first time, the application
code will find that its newly created application directory isempty. In such a
situation, the application might wish to offer the user a choice between starting over
with the application defaults or migrating settings and data from an older version of
the application.

Thefollowing call to APP_USER_DIR_QUERY can be used to locate application
user directoriesthat are for other versions of the application, but for the same
operating system family. The QUERY _APPVERSION keyword causes the function

APP_USER_DIR_QUERY IDL Reference Guide

Chapter 3: Procedures and Functions 97

to match all application versions, while the EXCLUDE_CURRENT keyword tells it
to exclude the application user directory for the current system:
ol d_appdirs = APP_USER DI R_QUERY(' acne', 'acne_grill', $

RESTRI CT_APPVERSI ON=' 1. 0", /RESTRICT_FAM LY, $
/ QUERY_APPVERSI ON, / EXCLUDE_CURRENT)

Note that APP_USER_DIR_QUERY may return more than one directory. It isup to
the application to decide which one to use. Applications that intend to migrate
information between versions should include information in their application user
directories that will facilitate such migration.

Version History

6.1 I ntroduced

See Also

APP_USER DIR, FILE_SEARCH

IDL Reference Guide APP_USER_DIR_QUERY

98 Chapter 3: Procedures and Functions
ARG _PRESENT

The ARG_PRESENT function is useful in user-written procedures that need to know
if the lifetime of avalue they are creating extends beyond the current routine’s
lifetime. This can be important for two reasons.

1. To avoid expensive computations that the caller is not interested in.

2. To prevent heap variable leakage that would result if the routine creates

pointers or object references and assigns them to arguments that are not passed
back to the caller.

Syntax
Result = ARG_PRESENT (Variable)

Return Value

Returns a nonzero value if the following conditions are met:

* Theargument to ARG_PRESENT was passed as a plain argument or keyword
to the current routine by its caller, and

e Theargument to ARG_PRESENT isanamed variable into which avalue will
be copied when the current routine exits.

In other words, ARG_PRESENT returns TRUE if the value of the specified variable
will be passed back to the caller.

Arguments

Variable
The variable to be tested.

Example

Suppose that you are writing an IDL procedure that has the following procedure
definition line:

PRO nyproc, RET_PTR = ret_ptr

ARG_PRESENT IDL Reference Guide

Chapter 3: Procedures and Functions 99

Theintent of the RET_PTR keyword isto pass back a pointer to a new pointer heap
variable. The following command could be used to avoid creating (and possibly
losing) a pointer if no named variableis provided by the caller:

| F ARG PRESENT(ret ptr) THEN BEG N

The commands that follow would only be executed if r et _pt r is supplied and will
be copied into avariable in the scope of the calling routine.

Version History

50

Introduced

See Also

KEYWORD_SET, N_ELEMENTS, N_PARAMS

IDL Reference Guide

ARG_PRESENT

100 Chapter 3: Procedures and Functions

ARRAY_EQUAL

The ARRAY_EQUAL function is afast way to compare data for equality in
situations where the index of the elements that differ are not of interest. This
operation is much faster than using TOTAL (A NE B), because it stops the
comparison as soon as the first inequality is found, an intermediate array is not
created, and only one pass is made through the data. For best speed, ensure that the
operands are of the same data type.

Arrays may be compared to scalars, in which case each element is compared to the
scalar. For two arraysto be equal, they must have the same number of elements. If the
types of the operands differ, the type of the least preciseis converted to that of the
most precise, unlessthe NO_TY PECONV keyword is specified to prevent it. This
function works on all numeric types, strings, pointer references, and object
references. In the case of pointer and object references, ARRAY_EQUAL compares
the references (which are long integers), not the heap variables to which the
references point.

Syntax
Result = ARRAY_EQUAL(Opl, Op2[,/NO_TYPECONV])
Return Value

Returns 1 (true) if, and only if, all elements of Opl are equal to Op2; returns O (false)
at the first instance of inequality.

Arguments
Op1l, Op2
The variables to be compared.
Keywords

NO_TYPECONV

By default, ARRAY _EQUAL converts operands of different typesto acommon type
before performing the equality comparison. Set NO_TYPECONYV to disalow this
implicit type conversion. If NO_TYPECONYV is specified, operands of different
types are never considered to be equal, even if their numeric values are the same.

ARRAY_EQUAL IDL Reference Guide

Chapter 3: Procedures and Functions 101

Examples

; Return True (1) if all elenments of a are equal to a 0 byte:
| F ARRAY_EQUAL(a, Ob) THEN ...

Return True (1) if all elenents of a are equal all elenents of b:
| F ARRAY_EQUAL(a, b) THEN ...

Version History

5.4 I ntroduced

IDL Reference Guide ARRAY_ EQUAL

102 Chapter 3: Procedures and Functions

ARRAY_INDICES

The ARRAY _INDICES function converts one-dimensional subscripts of an array
into corresponding multi-dimensional subscripts.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
array_i ndi ces. prointhel i b subdirectory of the IDL distribution.

Syntax
Result = ARRAY_INDICES(Array, Index [, /DIMENSIONS])
Return Value

If Index isascalar, returns avector containing m dimensional subscripts, where mis
the number of dimensions of Array.

If Index is avector containing n elements, returns an (mx n) array, with each row
containing the multi-dimensional subscripts corresponding to that index.

Arguments

Array

An array of any type, whose dimensions should be used in converting the subscripts.
If DIMENSIONS s set then Array should be a vector containing the dimensions.

Index

A scalar or vector containing the one-dimensional subscripts to be converted.
Keywords
DIMENSIONS

If this keyword is set, then Array is assumed to be avector containing the dimensions.

Tip
This keyword is useful when you don't have the actual Array, and want to avoid
alocating the array just to find the indices.

ARRAY_INDICES IDL Reference Guide

Chapter 3: Procedures and Functions 103

Examples

Example 1

This example finds the location of the maximum value of arandom 10 by 10 array:

seed = 111

array = RANDOMJ(seed, 10, 10)

mk = MAX(array, |ocation)

ind = ARRAY_I NDI CES(array, |ocation)

PRINT, ind, array[ind[0],ind[1]], $
FORMAT = ' (% Value at [%, %] is %")'

IDL prints:
Value at [3, 6] is 0.973381
Example 2
This example is the same as the previous example, but uses the/ DIMENSIONS
keyword.
seed = 111

array = RANDOMJ(seed, 10, 10)
mx = MAX(array, |ocation)
dims = Sl ZE(array, /DI MENSI ONS)
ind = ARRAY_I NDI CES(di ns, | ocation, /D MENSI ONS)
print, ind, array[ind[O],ind[1]], $
format = '(%WValue at [%, %] is %")'

IDL prints:
Value at [3, 6] is 0.973381

Example 3

This example routine locates the highest point in the example Maroon Bells data set
and places aflag at that point.
Enter the following code in the IDL editor:

PRO ExARRAY_| NDI CES
; lmport Maroon Bel |l s data.
file = FILEPATH(' surface.dat', $
SUBDI RECTORY = ['exanples', 'data'])

data = READ BI NARY(file, DATA DIMS = [350, 450], $
DATA TYPE = 2, ENDIAN='little')

; Display data.

IDL Reference Guide ARRAY_INDICES

104 Chapter 3: Procedures and Functions

| SURFACE, data

; Cal cul ate the value and one-di nensi onal
array location of the highest point.
maxVal ue = MAX(data, naxPoint)

; Using ARRAY_INDI CES to convert the one-

; dinensional array location to a two-

; dinensional aray |ocation.

maxLocati on = ARRAY_I NDI CES(dat a, naxPoi nt)

; Print the results.
PRI NT, 'Hi ghest Point Location: ', naxLocation
PRI NT, 'Hi ghest Point Value: ', maxVal ue

Create flag for the highest point.

X maxLocat i on[0]

y maxLocat i on[1]

z = maxVal ue

xFlag = [x, X, x + 50., x]

yFlag = [y, y, y + 50., V]

zFlag = [z, z + 1000., z + 750., z + 500.]

; Display flag at the highest point.
| PLOT, xFlag, yFlag, zFlag, /OVERPLOT

END

Save the code as ExARRAY_| NDI CES. pr o, compileit and run it. The following
figure displays the output of this example:

Figure 3-1: Maroon Bells Surface Plot with Flag at Highest Point Before Rotation
(Left) and After Rotation (Right)

ARRAY_INDICES IDL Reference Guide

Chapter 3: Procedures and Functions 105

For a better view of the flag, use the Rotate tool to rotate the surface.

Version History

6.0 I ntroduced

See Also

MAX, MIN, WHERE

IDL Reference Guide ARRAY_INDICES

106 Chapter 3: Procedures and Functions

ARROW

The ARROW procedure draws one or more vectors with arrow heads.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
arrow. pro inthel i b subdirectory of the IDL distribution.

Syntax

ARROW, X0, YO, X1, Y1 [, /DATA |, INORMALIZED] [, HSIZE=length]
[, COLOR=index] [, HTHICK=valu€] [, /SOLID] [, THICK=valug]

Arguments
X0, YO

Arrays or scalars containing the coordinates of the tail end of the vector or vectors.
Coordinates are in DEVICE coordinates unless otherwise specified.

X1,Y1

Arrays or scalars containing the coordinates of the arrowhead end of the vector or
vectors. X1 and Y1 must have the save number of elements as X0 and YO.

Keywords

DATA
Set this keyword if vector coordinates are DATA coordinates.

NORMALIZED
Set this keyword if vector coordinates are NORMALIZED coordinates.

HSIZE

Use this keyword to set the length of the lines used to draw the arrowhead. The
default is 1/64th the width of the display (!D.X_SIZE/ 64.). If the HSIZE is positive,
the value is assumed to be in device coordinate units. If HSIZE is negative, the
arrowhead length is set to the vector length * ABS(HSIZE). The lines are separated
by 60 degrees to make the arrowhead.

ARROW IDL Reference Guide

Chapter 3: Procedures and Functions 107

COLOR

The color of the arrow. The default is the highest color index.
HTHICK

The thickness of the arrowheads. The default is 1.0.
SOLID

Set this keyword to make a solid arrow, using polygon fills, looks better for thick
arrows.

THICK
The thickness of the body. The default is 1.0.

Examples

Draw an arrow from (100,150) to (300,350) in DEVICE units:
ARROW 100, 150, 300, 350
Draw a sine wave with arrows fromtheline Y = 0 to SIN(X/4):

X = FI NDGEN(50)
Y = SIN(x/ 4)
PLOT, X, Y

ARROW X, REPLI CATE(O, 50), X, Y, /DATA

Version History

Pre4.0 Introduced

See Also

ANNOTATE, PLOTS, VELOVECT

IDL Reference Guide ARROW

108 Chapter 3: Procedures and Functions

ASCII_TEMPLATE

The ASCII_TEMPLATE function presents agraphical user interface (GUI) which
generates atemplate defining an ASCII file format. Templates are IDL structure
variables that may be used when reading ASCI|I fileswith the READ_ASCII routine.
See READ_ASCII for details on reading ASCI| files.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
ascii_tenpl ate. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = ASCII_TEMPLATE([Filename] [, BROWSE_LINES=lines]
[, CANCEL=variable] [, GROUP=widget_id])

Return Value
Returns atemplate defining an ASCI| file format.
Arguments

Filename

A string containing the name of afile to base the template on. If Filenameis not
specified, adialog allows you to choose afile.

Keywords

BROWSE_LINES

Set this keyword equal to the number of linesthat will be read in at atime when the
“Browse” button is selected. The default is 50 lines.

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “ Cancel” button, or O otherwise.

ASCIl_TEMPLATE IDL Reference Guide

Chapter 3: Procedures and Functions 109

GROUP

The widget ID of an existing widget that serves as “group leader” for the
ASCII_TEMPLATE graphical user interface. When a group leader is killed, for any
reason, all widgetsin the group are al'so destroyed.

Examples

Use the following command to generate a template structure from the file “myFile”:
myTenpl ate = ASClI | _TEMPLATE(nyFi | e)
Note

If no filenameis supplied in the call to the ASCII_TEMPLATE function, afile
selection dialog is displayed prior to the first ASCII_TEMPLATE screen.

Using the ASCII Template Dialog

The ASCII_TEMPLATE function lets you describe the data organi zation of an ASCI|
file and generates a template that describes how to correctly import the ASCII data.
The READ_ASCII function accesses the datain an ASCI| file, using the template to
determine how to import the data correctly. (You only have to explicitly call
READ_ASCII when you call ASCII_ TEMPLATE from the command line. When
you start the ASCI I Template dialog from aniTool or the IDLDE, the READ_ASCI|I
routineis called for you.) The templateisan IDL variable that you can useto read
other files with the same organization.

After starting the ASCII Template dialog using one of the methods described in
“Launching the ASCII Template Dialog” in Chapter 6 of the Using IDL manual,
complete the following steps to create the templ ate:

1. Select the ASCII file. In the Select File to Open dialog, select
si ne_waves.t xt fromthe exanpl es\ dat a subdirectory of your IDL
distribution. The ASCII Template window is displayed.

2. Define ASCII datatype and range. For this data set, make sure the following
options are selected and then click Next:

e Field Type of Delimited
e Comment Stringto Ignoreisblank asthere are no file comments

« Data Startsat Linevalue of 1

IDL Reference Guide ASCIlI_TEMPLATE

110

Chapter 3: Procedures and Functions

The following table describes each of these options.

Field Type Choose from fixed width or delimited.

Comment Enter any character that indicates text sections to
String to Ignore | ignore.

Data Startsat | Enter the line number containing the first line of

Line data to be read.
Selected Text | Shows the real data from the selected text file. The
File option is also given to Get next 50 Lines.
' x|

ASCIl Template Step 1 of 3: Define Data Type/Range

First choose the figld type which best describes your data;
 Fized Width [fields are sligned in columns]

& Delimited (fields are separated by commas, whitespace, etc.

Comment String ta lgnore:
Data Starts at Line: |1

Selected Text Fils: Get nest 50 lines..
@-4RESI4 IDLEZY exanpleshdata’ sine_waves

_txt

Cancel | << Back | Mext >3 |

Figure 3-2: The ASCII Template Step 1, Defining Data Type and Range

3. Define ASCII datafield characteristics. For thisdataset, select the following
options and then click Next:

e Number of Fields Per Line equals 2

« Delimiter Between Data Elements equals White space
e Valueto Assign to Missing Data optionis |[EEE NaN

» Selected Records shows datain thefile.

ASCIl_TEMPLATE IDL Reference Guide

Chapter 3: Procedures and Functions 111

The following table describes each of these options:

Number of Specify how many fields should appear per line.

Fields Per Line
Delimiter Define the delimiter type between data elements.
Between Dala | note - I you selected a Field Type of Fixed
Elements

Width on the previous dialog screen, thisfield is
not visible.

Valueto Assign | Choose avalue to assign any missing data. Select
Missing Data | |EEE Nan or define a custom value.

Selected Shows the dataitself in its desired column-
Records delimited format.

ES|
ASCIl Template Step 2 of 3: Define Delimiter/Fields

Hurmber of Fields Per Line: |2

Delimiter Between Data Elements:
* Wwhite Space (" Colon Tab
 Camma Semicolon ¢ Other

Yslue to Assign to Missing Dater @ IEEENaN €

Selected Records:

C:WREIMIDLEZN examplesidatalsine_waves. tat

Carcel || <c Back |7HEHS]

Figure 3-3: The ASCII Template Step 2, Defining Delimeters/Fields

IDL Reference Guide ASCIlI_TEMPLATE

112 Chapter 3: Procedures and Functions

4. Specify field characteristics. For this data set, define the following:

* NameFieldl Snoot hSi ne and Field2 Noi sySi ne by selecting each field
and entering the names in the Name field. The Type fields are correct and
do not need to be changed.

* Accept the default Grouping (none).

The following table describes each of these options:

Name Allows you to name your fields. Default values are
Fieldl, Field2, and so on. You can enter the name
into the Name field to the right.

Data Type Allowsyou to set the datatype for your fields. You
can enter a different type by selecting it from the
Type drop-down menu.

Grouping Letsyou join selected fields into asingle field that
isto be manipulated or displayed as agroup. The
default is no grouping.

Selected Shows a sample of the data with your defined
Records configuration parameters.

ASCIl_TEMPLATE IDL Reference Guide

Chapter 3: Procedures and Functions 113

xl
ASCIl Template Step 3 of 3: Field Specification
Meme: [SmoctGie

i o

Group I Group All | UnGroup I UngruupAHl

Sample Record:

il

Cancel <<Back| Finish |

Figure 3-4: ASCII Template Step 3, Field Specifications

5. Createthetemplate. Click Finish.

The result of these actions depends on the location from which you launched the
ASCII Template dialog. The READ_ASCII function, which reads data from afile
according to the template specification, is automatically called when you access the
ASCI| Template dialog from iTools or from the Import ASCII macro. From the
command line, you must explicitly read the ASCI| data with the template
specification. After defining the structure of your ASCII data using the ASCI |
Template dialog, refer to the appropriate section:

e iTools ASCII data access— the ASCII dataisread and placed in the Data
Manager. You can display single or multiple fields of the data using the I nsert
Visualization dialog. See “Inserting Visualizations’ in Chapter 3 of the iTool
User’s Guide manual for details.

* Import ASCII macro data access — the ASCII datais placed in a structure.
You can access fields of the data using a SructureName.FieldName syntax.
See "Using Macros to Import ASCII Files’ in Chapter 6 of the Using IDL
manual.

« Command line ASCI| data access — the template is a structure defining the
format of the ASCII data. Accessthe datausing READ_ASCII, and specify

IDL Reference Guide ASCIlI_TEMPLATE

114

Chapter 3: Procedures and Functions

the template (or other characteristics) as parameters of the data access
operation. See “Working with a READ_ASCII Data Structure” on page 1920
for details.

Example: Create a SAVE File of a Custom ASCII Template

When importing an ASCII datafileinto IDL, you must first describe the format of the
data using the interactive ASCII_TEMPLATE function. If you have a number of
ASCII filesthat have the same format, you can create and save a customized ASCI|
template using the SAVE procedure. After creating a SAVE file of your custom
template, you can avoid having to repeatedly define the same fields and records when
reading in ASCII filesthat have the same structure.

1

ASCII_TEMPLATE

At the IDL command line, enter the following to create the variable
pl ot Tenpl at e, which will contain your custom ASCII template:

pl ot Tenpl ate = ASCI | _TEMPLATE()
A dialog box appears, prompting you to select afile.

Select thepl ot . t xt fileinthe exanpl es/ dat a subdirectory of the IDL
distribution.

Note
Another way to import ASCII dataisto use the Import ASCI| File toolbar
button on the IDLDE toolbar. To use this feature, simply click the button and
select pl ot . t xt from the file selection dialog.

After selecting the file, the Define Data Type/Range dialog appears. First,
choose the field type. Since the datafile is delimited by tabs (or whitespace)
select the Delimited button. In the Data Starts at Linefield, specify to begin
reading the data at line 3, not line 1, since there are two comment lines at the
beginning of the file. Click Next to continue.

Inthe Define Delimiter/Fields dialog box, select Tab as the delimiter between
data elements since it is known that tabs were used in the original file. Click
Next.

In the Field Specification dialog box, name each field as follows:
e Click onthefirst row (row 1). In the Namefield, enter t i ne.
» Select the second row and enter t enper at ur el.

e Sdlect the third row and enter t enper at ur e2.

Click Finish.

IDL Reference Guide

Chapter 3: Procedures and Functions 115

7. Typethefollowing line at the IDL command lineto read in the pl ot . t xt file
using the custom template, pl ot Tenpl at e:

PLOT_ASCI |
[' exanpl es',

= READ ASCI | (FI LEPATH(' pl ot.txt', SUBDI RECTORY = $
"data']), TEMPLATE = pl ot Tenpl at e)

8. Enter thefollowing lineto print thepl ot . t xt file data:
PRI NT, PLOT_ASC |

The file contents are printed in the Output Log window. Your output will
resemble the following display.

DL~ PRINT, PLOT_ASCIT
1 1z

2.90000
1.90000
H

2. 20000
3,90000

4| | »

Narne

Type

PLOTTEMPLATE
PLOT_ASCH

fl I I\ Locals {Paramsi Common }_. System | 4 |

STRUCT
STRUCT

{ chnonpmousy
{ <hnanymaus> }

Figure 3-5: PLOT_ASCII Printout

9. Create a SAVE file of your custom template by entering the following:
SAVE, pl ot Tenpl at e,

10. To restore the template so that you can read another ASCII file, enter:
RESTORE, ' nyPl ot Tenpl at e. sav'

FI LENAME=' nyPl ot Tenpl at e. sav'

Thisfile contains your custom ASCII template information stored in the
structure variable, pl ot Tenpl at e.

Note
If you are attempting to restore afile that is not in your current working
directory, you will need to specify a path to thefile.

11. After restoring your custom template, you can read another ASCI| filethat is
delimited in the same way as the origina file by using the READ_ASCI|
function and specifying pl ot Tenpl at e for the TEMPLATE:

PLOT_ASCI| = READ ASCI | (FI LEPATH(' plot.txt', $

SUBDI RECTORY = ['exanples', 'data']), $
TEMPLATE = pl ot Tenpl at e)

IDL Reference Guide ASCIlI_TEMPLATE

116 Chapter 3: Procedures and Functions

12. Enter the following to display the contents of the file using the customized
ASCII template structure previously defined using the dialog.

PRI NT, PLOT_ASCI |

Version History

5.0 I ntroduced

See Also

QUERY_ASCII, READ_ASCII, BINARY_TEMPLATE

ASCII_TEMPLATE

IDL Reference Guide

Chapter 3: Procedures and Functions 117

ASIN

The ASIN function returns the angle, expressed in radians, whose sineis X (i.e., the
arc-sine).

For real input, the range of ASIN is between -ri/2 and /2.
For input of acomplex number, Z = X +iY, the complex arcsineis given by,
asin(Z) = asin(B) +i alog(A + sqrt(A2- 1)) if Y >=0
asin(Z) = asin(B) - i alog(A + sqrt(AZ- 1)) if Y <0
where
A =05 sgrt((X + 1)2+Y?) + 0.5 sgrt((X - 1)% + Y?)
B=05sgrt((X + 1)2+Y?) - 0.5 sgrt((X - 1)2+ Y?)

The separation of the two formulasat Y = 0 takes into account the branch-cut
discontinuity along the real axisfrom -oo to -1 and +1 to +oo, and ensures that
sin(asin(Z)) isequal to Z. For reference, see formulas 4.4.37-39 in Abramowitz, M.
and Stegun, 1.A., 1964: Handbook of Mathematical Functions (Washington: National
Bureau of Standards).

Syntax
Result = ASIN(X)
Return Value
Returns the angle, expressed in radians, whose sineis X (i.e., the arc-sine).
Arguments
X

The sine of the desired angle. For real input, X should beintherange-1to+1. If X is
double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results. If X
isan array, the result has the same structure, with each element containing the arcsine
of the corresponding element of X.

IDL Reference Guide ASIN

118 Chapter 3: Procedures and Functions

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Find the angle whose sine is 0.707 and print the result in degrees by entering:

PRI NT, 180/!PI*ASI N(0. 707)
IDL prints:
44,9913

Find the complex arcsine of 2 + i and print the result by entering:

PRI NT, ASI N(COWLEX(2, 1))
IDL prints:
(1. 06344, 1. 46935)

See the ATAN function for an example of visualizing the complex arcsine.

Version History

Original Introduced

See Also

ACOS, COS, COSH, SIN, SINH, ATAN, TAN, TANH

ASIN IDL Reference Guide

Chapter 3: Procedures and Functions 119

ASSOC

The ASSOC function associates an array structure with afile. It provides abasic
method of random access input/output in IDL.

Note
Unformatted data files generated by FORTRAN programs under UNIX contain an
extralong word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. Thisistrue even
if the F77_UNFORMATTED keyword is specified in the
OPENR/OPENU/OPENW statement. Therefore, ASSOC should not be used with
such files. Instead, such files should be processed using READU and WRITEU. An
example of using IDL to read such datais given in “Using Unformatted
Input/Output” in Chapter 18 of the Building IDL Applications manual.

Note
Associated file variables cannot be used for output with files opened using the
COMPRESS keyword to OPEN. Thisis dueto the fact that it is not possible to
move the current file position backwards in a compressed file that is currently open
for writing. ASSOC is allowed with compressed files opened for input only.
However, such operations may be slow due to the large amount of work required to
change the file position in a compressed file.

Effective use of ASSOC requires the ability to rapidly position the file to arbitrary
positions. In general, files that require random access may not be good candidates
for compression. If thisis necessary however, such files can be processed using
READU and WRITEU.

Syntax
Result = ASSOC(Unit, Array_Structure [, Offset] [, /PACKED])
Return Value
Returns a value that when assigned to a variable, stores the association between an

array structure and afile in an associated variable. This variable provides a means of
mapping afileinto vectors or arrays of a specified type and size.

IDL Reference Guide ASSOC

120 Chapter 3: Procedures and Functions

Arguments
Unit
The IDL file unit to associate with Array_Structure.
Array_Structure

An expression of the data type and structure to be associated with Unit are taken from
Array_Structure. The actual value of Array_Structure is not used.

Offset

The offset in the file to the start of the datain the file, in bytes.
Keywords
PACKED

When ASSOC is applied to structures, the default action is to map the actual
definition of the structure for the current machine, including any holes required to
properly aign thefields. (IDL usesthe samerules for laying out structures asthe C
language). If the PACKED keyword is specified, 1/0 using the resulting variable
instead works in the same manner as READU and WRITEU, and datais moved one
field at atime and there are no alignment gaps between the fields.

Examples

Suppose that thefilei mages. dat holds 5 images as 256-element by 256-element
arrays of bytes. Open the file for reading and create an associated variable by
entering:

OPENR, 1, 'immges.dat' ;Open the file as file unit 1.
A = ASSOC(1, BYTARR(256, 256)) ;Make an associated vari abl e.

Now A[Q] correspondsto thefirst imagein thefile, A[1] isthe second element, etc.
To display the first image in thefile, you could enter:

v, A(]

The datafor the first imageis read and then displayed. Note that the data associated
with A[0] is not held in memory. It isread in every time there is areference to A[0].
To store the image in the memory-resident array B, you could enter:

B = A0]

ASSOC IDL Reference Guide

Chapter 3: Procedures and Functions 121

Note
It isaso possibleto refer to individual elements within an associated array directly,
using multiple subscripts. See“ Multiple Subscripts With Associated File Variables
in Chapter 18 of the Building IDL Applications manual for details and examples.

Version History

Original Introduced

See Also

OPENR/OPENU/OPENW, READU, “Associated | nput/Output” in Chapter 18 of the
Building IDL Applications manual.

IDL Reference Guide ASSOC

122 Chapter 3: Procedures and Functions

ATAN

The ATAN function returns the angle, expressed in radians, whose tangent is X (i.e.,
the arc-tangent). If two parameters are supplied, the angle whose tangent is equal to
Y/Xis returned.

For real input, the range of ATAN is between -r/2 and /2 for the single argument
case, and between -n and = if two arguments are given.

In the single argument case with a complex number, Z = X +iY, the complex
arctangent is given by,

atan(Z) = 0.5 atan(2x, 1 - X2 - y) + 0.25i alog((x? + (y+1)2/(x? + (y-1)?))

In the above formula, the use of the two-argument arctangent separates the solutions
at X = 0 and takes into account the branch-cut discontinuity along the imaginary axis
from -ico to -i and +i to +ioo, and ensures that tan(atan(2)) isequal to Z. For reference,
see formulas 4.4.37-39 in Abramowitz, M. and Stegun, |.A., 1964: Handbook of
Mathematical Functions (Washington: National Bureau of Standards).

In the two argument case with two complex numbers Zy and Zx, the complex
arctangent is given by,

atan(Zy, Zx) = -i alog((Zx + iZy)/sart(Zx? + Zy?))

In the two-argument case (either real or complex), if both arguments are zero, the
result returned is platform-dependent but typically O.

Syntax

Result = ATAN(X [, /PHASE])
or
Result = ATAN(Y, X)

Return Value

Returns the angle, expressed in radians, whose tangent is X (i.e., the arc-tangent). If
two parameters are supplied, the angle whose tangent is equal to Y/X is returned.

ATAN IDL Reference Guide

Chapter 3: Procedures and Functions 123

Arguments

X

The tangent of the desired angle. If X is double-precision floating or complex, the
result is of the same type. All other types are converted to single-precision floating-
point and yield floating-point results. If X isan array, the result has the same
structure, with each element containing the arctangent of the corresponding element
of X.

An optional argument. If this argument is supplied, ATAN returns the angle whose
tangent is equal to Y/X. If both arguments are arrays, the function matches up the
corresponding elements of X and Y, returning an array with the same dimensions as
the smallest array. If one argument is a scalar and the other argumentsis an array, the
function uses the scalar value with each element of the array, and returns an array
with the same dimensions as the input array.

Keywords
PHASE

If this keyword is set, and the argument is a complex number Z, then the complex

phase angle is computed as ATAN(Imaginary(Z), Real_part(Z)). If this keyword is

not set, then the complex arctangent is computed as described above. If the argument

is not complex or if two arguments are present, then this keyword isignored.

Tip
Using the PHA SE keyword is equivalent to computing ATAN(Imaginary(Z),
Real_part(Z)), but uses less memory and is faster.

Thread Pool Keywords

Thisroutine is written to make use of IDL’sthread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide ATAN

124 Chapter 3: Procedures and Functions

Example

Find the angle whose tangent is 0.5 and print the result in degrees by entering:

PRI NT, 180/! Pl *ATAN(O. 5)
IDL prints:
26. 5651

Find the angle whose tangent is 0.5, taking into account that the tangent came from
the ratio -0.25/-0.5:

PRI NT, 180/!PI *ATAN(-0.25, -0.5)
IDL prints:
-153. 435

Find the complex arccosine of 2 + i and print the result by entering:

PRI NT, ATAN(COVPLEX(2, 1))
IDL prints:
(1.17810, 0.173287)

Create avisuaization of the complex arctangent:

Create a grid of conplex nunbers.

100

(FI'NDGEN(Nn)-(n-1)/2.0)/(n/4)

DCOVPLEX(REBI N(x, n, n), REBI N(TRANSPGSE(x), n, n))

= ‘
I n

Try any of these transcendental functions:
ACCS, COS, COSH, ASIN, SIN, SINH,
ATAN, TAN, TANH, ALOG EXP
fn = ATAN(z)

| SURFACE, FLOAT(fn), x, X, COLORS[255, 180, 0]
| SURFACE, | MAGI NARY(fn), x, x, COLOR=[0, 150, 255], /OVERPLOT

Version History

Original Introduced
5.6 Added PHASE keyword

ATAN IDL Reference Guide

Chapter 3: Procedures and Functions 125

See Also

ACQOS, COS, COSH, SIN, ASIN, SINH, TAN, TANH

IDL Reference Guide ATAN

126

AXIS

Syntax

AXIS

Chapter 3: Procedures and Functions

The AXIS procedure draws an axis of the specified type and scale at a given position.
It can be used to add additional axesto plots or to draw axes at a specified position.
The new scaleis saved for use by subsequent overplotsif the SAVE keyword
parameter isset. By default, AXISdrawsan X axis. The XAXIS, YAXIS, and ZAXIS
keywords can be used to select a specific axis type and position.

AXIS[, X[, YL, ZI1] [, /SAVE] [, XAXIS={0| 1} | YAXIS={0|1} | ZAXIS={0|1]|2
|3}] [, /XLOG] [, /YNOZEROQ] [, /YLOG]

Graphics Keywords: [, CHARSIZE=valug] [, CHARTHICK =integer]

[, COLOR=value] [, /DATA |, /DEVICE |, INORMAL] [, FONT=integer]
[, INODATA] [, /INOERASE] [, SUBTITLE=string] [, /T3D] [, TICKLEN=value]

[L{X]Y |Z} CHARSIZE=value]

[,{X |Y | Z} GRIDSTY LE=integer{ 0 to 5}]

[,{X|Y | Z}MARGIN=[left, right]]
{X]Y | Z} MINOR=integer]

XY | ZYRANGE=[min, max]]

| Y | Z} STYLE=value]

|Y | Z} THICK=value]

|Y | Z} TICKFORMAT=string]

| Y | Z} TICKINTERVAL= valug]
|Y | Z} TICKLAYOUT=scalar]

| 'Y | Z} TICKLEN=value]

| Y | Z} TICKNAME=string_array]
I

I

I

I

I

[,
[{
[.{
[{
[{
[{
[{
[{
[.{
[, {X]Y |Z} TICKS=integer]
[,{X|Y |Z}TICKUNITS=string]
[{X]|Y |Z}TICKV=array]
L{X]|Y |Z}TICK_GET=variable]
[{X|Y |Z}TITLE=string]

[, ZVALUE=value{0to 1}]

X
X
X
X
X
X
X
X
X
X
X
X

IDL Reference Guide

Chapter 3: Procedures and Functions 127

Arguments

X,Y,and Z

Scalars giving the starting coordinates of the new axis. If no coordinates are specified,
the axisis drawn in its default position as given by the [XY Z]AXIS keyword. When
drawing an X axis, the X coordinate isignored, similarly the Y and Z arguments are
ignored when drawing their respective axes (i.e., new axes will always point in the
correct direction).

Keywords
SAVE

Set this keyword to indicate that the scaling to and from data coordinates established
by the call to AXISisto be saved in the appropriate axis system variable, !X, 1Y, or
1Z. If this keyword is not present, the scaling is not changed.

XAXIS

Set this keyword to draw an X axis. If the X argument is not present, setting XAXIS
equal to 0 draws an axis under the plot window with the tick marks pointing up, and
setting XA XIS equal to one draws an axis above the plot window with the tick marks
pointing down. If the X argument is present, the X axisis positioned accordingly, and
setting XAXIS equal to 0 or 1 causes the tick marks to point up or down, respectively.

XLOG
Set this keyword to specify alogarithmic X axis
YAXIS

Set this keyword to draw a'Y axis. If the Y argument is not present, setting YAXIS
equal to 0 draws an axis on the left side of the plot window with the tick marks
pointing right, and setting YAXIS equal to one draws an axis on the right side of the
plot window with the tick marks pointing left. If the Y argument is present, the Y axis
is positioned accordingly, and setting YAXIS equal to O or 1 causes the tick marksto
point right or left, respectively.

Note
The YAXIS keyword must be specified in order use any Y* graphics keywords. See
the note under “ Graphics Keywords Accepted” on page 128 for more information.

IDL Reference Guide AXIS

128

AXIS

Chapter 3: Procedures and Functions

YLOG

Set this keyword to specify alogarithmic Y axis.

YNOZERO

Set this keyword to inhibit setting the minimum 'Y axisvalueto zero whenthe Y data
are al positive and non-zero, and no explicit minimum Y valueis specified (using
YRANGE, or 'Y.RANGE). By default, the Y axis spans the range of O to the
maximum value of Y, in the case of positive Y data. Set bit 4in!Y.STYLE to make
this option the default.

ZAXIS

Set thiskeyword to draw a Z axis. If the Z argument is not present, setting ZAXIS has
the following meanings:

e 0= lower (front) right, with tickmarks pointing left
e 1=Ilower (front) left, with tickmarks pointing right
o 2= upper (back) left, with tickmarks pointing right
e 3= upper (back) right, with tickmarks pointing left

If the Z argument is present, the Z axis is positioned accordingly, and setting ZAXIS
equal to 0 or 1 causes the tick marksto point |eft or right, respectively.

Note that AXIS uses the 3D plotting transformation stored in the system variable
field 'PT.

Note
The ZAXIS keyword must be specified in order use any Z* graphics keywords. See
the note under Graphics Keywords Accepted for more information.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords’ for the description of the following graphics
and plotting keywords:

CHARSIZE, CHARTHICK, COLOR, DATA, DEVICE, FONT, NODATA,
NOERASE, NORMAL, SUBTITLE, T3D, TICKLEN, [XYZ]CHARSIZE,
[XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE,
[XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT, [XYZ]TICKINTERVAL,
[XYZ]TICKLAYOUT, [XYZ]TICKLEN, [XYZ]TICKNAME, [XYZ]TICKS,
[XYZ]TICKUNITS, [XYZ]TICKV, [XYZ]TICK_GET, [XYZ]TITLE, ZVALUE

IDL Reference Guide

Chapter 3: Procedures and Functions 129

Note
In order for the Y* or Z* graphics keywords to work with the AXIS procedure, the
corresponding YAXIS or ZAXIS keyword must be specified. For example, the
following code will not draw atitle for the Y axis:

AXI'S, YTITLE ='Y-axis Title'

To use the YTITLE graphics keyword, you must specify the YAXIS keyword to
AXIS:

AXIS, YAXIS = 0, YTITLE =" Y-axis Title'

Because the AXIS procedure draws an X axis by default, it is not necessary to
specify the XAXIS keyword in order to use the X* graphics keywords.

Examples

The AXIS procedure accepts the set of plotting keyword parameters that govern the
scaling and appearance of the axes. Additionally, the keyword parameters XAXIS,
YAXIS, and ZAXIS specify the orientation and position (if no position coordinates
are present) of the axis. The value of these parameters are O for the bottom or |eft axis
and 1 for the top or right. The tick marks and their annotation extend away from the
plot window. For example, specify YAXIS = 1 to draw ay-axis on the right of the
window.

The optional keyword parameter SAV E saves the data-scaling parameters established
for the axisin the appropriate axis system variable, ! X, Y, or IZ. Any of the
coordinate systems can be used by including the appropriate coordinate keyword in
the call. The coordinate corresponding to the axis direction isignored. When
specifying an x-axis, the x-coordinate parameter is ignored, but must be present if
thereisay coordinate.

The following example shows how the AX1S procedure can be used with normal or
polar plots to draw axes through the origin, dividing the plot window into four
quadrants:

Make the plot, polar in this exanple, and suppress the X and Y

; axes using the XSTYLE and YSTYLE keywords:
PLOT, /POLAR, XSTYLE=4, YSTYLE=4, TITLE= Polar Plot', r, theta

; Draw an X axis, through data Y coordi nate of 0. Because the XAXI S

; keyword paraneter has a value of 0, the tick marks point down:
AXI'S, 0, 0, XAX=0, / DATA

IDL Reference Guide AXIS

130

AXIS

Chapter 3: Procedures and Functions

; Simlarly, draw the Y axis through data X = 0. The tick marks
; point left:
AXI S, 0, 0, 0, YAX=0, / DATA

Drawing Axes with a Different Scale

The figure shown below illustrates using AXI1Sto draw axes with a different scale,
opposite the main x- and y-axes. The plot is produced using PLOT with the bottom
and left axes annotated and scaled in units of days and degrees Fahrenheit. The
XMARGIN and YMARGIN keyword parameters are specified to alow additional
room around the plot window for the new axes. The keyword parameters XSTYLE =
8 and YSTYLE = 8 inhibit drawing the top and right axes.

Month
Jo Fe Mo Ap Mo Ju Ju Au 5e O¢ Mo Da

' 80F 125
E =
S 9% 1205
il E E T
5 BOF 50
b] m
g 5":1;‘ ‘:H'Jﬁ
Pt E . on
o 01 55 A
[305- -------l---------l---------l---......_l:l
0 100 200 300 400

Day of Year
Denver Average Temperature

Figure 3-6: A plot created with the AXIS procedure

Next, the AXIS procedure is called to draw the top, XAXIS =1, axis, labeled in
months. Eleven tick intervals with 12 tick marks are drawn. The x value of each
monthly tick mark is the day of the year that is approximately the middle of the
month. Tick-mark names come from the MONTH string array.

Theright y-axis, YAXIS = 1, isdrawn in the same manner. The new y-axisrangeis
set by converting the original y-axis minimum and maximum values, saved by PLOT
in 1Y.CRANGE, from Fahrenheit to Celsius, using the formula C = 5(F-32)/9. The

IDL Reference Guide

Chapter 3: Procedures and Functions 131

keyword parameter YSTYLE = 1 forcesthe y-axis range to match the given range
exactly. The program is as follows:

Plot the data, onit right and top axes:
PLOT, DAY, TEMP, /YNOZERO $
SUBTI TLE = ' Denver Average Tenperature', $
XTI TLE = 'Day of Year', $
YTI TLE = ' Degrees Fahrenheit', $
XSTYLE=8, YSTYLE=8, XMARG N=[8, 8], YMARG N=[4, 4]
Draw the top x-axis, supplying |labels, etc.
Make the characters smaller so they will fit:
AXI'S, XAXI S=1, XTI CKS=11, XTI CKV=DAY, XTI CKN=MONTH, $
XTI TLE=" Month', XCHARSI ZE = 0.7
Draw the right y-axis. Scale the current y-axis mninum
; values from Fahrenheit to Cel sius and nake them
; the new min and max values. Set YSTYLE=1 to neke axis exact.
AXI'S, YAXI S=1, YRANGE = (!Y.CRANGE-32)*5./9., YSTYLE =1, $
YTI TLE = ' Degrees Cel sius’

Example Code
The code above isincluded in the batch file pl ot 09 inthe exanpl es/ doc/ pl ot
subdirectory of the IDL distribution.

Using AXIS with Polar Plots

If the POLAR keyword parameter is set, the IDL PLOT procedure convertsits
coordinates from polar to Cartesian coordinates when plotting. The first parameter to
plot isthe radius, R, and the second is the angle 6 (expressed in radians). Polar plots
are produced using the standard axis and label styles, with box axes enclosing the plot
area.

The following figure illustrates using AXIS to draw centered axes, dividing the plot
window into the four quadrants centered about the origin. This method uses PLOT to
plot the polar data and to establish the coordinate scaling, but suppresses the axes.
Next, two callsto AXIS add the x- and y-axes, drawn through data coordinate (O, 0).

IDL Reference Guide AXIS

RSI_PROCODE/examples/doc/plot/plot09

132 Chapter 3: Procedures and Functions

Folar Plot

Figure 3-7: Using AXIS for polar plots

Make a radius vector:
R = FI NDGEN(100)

Make a vector:
THETA = R/'5

Pl ot the data, suppressing the axes by setting their styles to 4:
PLOT, R, THETA, SUBTITLE='Polar Plot', XSTY=4, YSTY=4, /POLAR
AXI'S, 0, 0, XAX=0

Draw the x and y axes through (0, 0):
AXI'S, 0, 0, YAX=0

Example Code
The code above isincluded in the batch file pl ot 09 inthe exanpl es/ doc/ pl ot

subdirectory of the IDL distribution.

Version History

Original Introduced

AXIS IDL Reference Guide

RSI_PROCODE/examples/doc/plot/plot09

Chapter 3: Procedures and Functions 133

See Also

LABEL_DATE, PLOT

IDL Reference Guide AXIS

134 Chapter 3: Procedures and Functions

BAR PLOT

The BAR_PLOT procedure creates a bar graph. This routine iswrittenin the IDL
language. Its source code can be found inthefilebar _pl ot. prointhelib
subdirectory of the IDL distribution.

Syntax

BAR_PLOT, Values [, BACKGROUND=color_index]
[, BARNAMES=string_array] [, BAROFFSET=scalar] [, BARSPACE=scalar]
[, BARWIDTH=value] [, BASELINES=vector] [, BASERANGE=scalar{ 0.0 to
1.0}] [, COLORS=vector] [, /OUTLINE] [, /OVERPLOT] [, /ROTATE]
[, TITLE=string] [, XTITLE=string] [, Y TITLE=string]

Arguments

Values

A vector containing the values to be represented by the bars. Each element in Values
corresponds to a single bar in the output.

Keywords
BACKGROUND

A scalar that specifiesthe color index to be used for the background color. By defaullt,
the normal IDL background color is used.

BARNAMES

A string array, containing one string label per bar. If the bars are vertical, the labels
are placed beneath them. If horizontal (rotated) bars are specified, the labels are
placed to the left of the bars.

BAROFFSET

A scalar that specifies the offset to be applied to the first bar, in units of “nominal bar
width”. This keyword allows, for example, different groups of bars to be overplotted
on the same graph. If not specified, the default offset is equal to BARSPACE.

BAR_PLOT IDL Reference Guide

Chapter 3: Procedures and Functions 135

BARSPACE

A scalar that specifies, in units of “nominal bar width”, the spacing between bars. For
example, if BARSPACE is 1.0, then all barswill have one bar-width of space between
them. If not specified, the bars are spaced apart by 20% of the bar width.

BARWIDTH

A floating-point value that specifies the width of the bars in units of “nominal bar
width”. The nominal bar width is computed so that all the bars (and the space
between them, set by default to 20% of the width of the bars) will fill the available
space (optionally controlled with the BASERANGE keyword).

BASELINES

A vector, the same size as Values, that contains the base value associated with each
bar. If not specified, a base value of zero isused for al bars.

BASERANGE

A floating-point scalar in the range 0.0 to 1.0, that determines the fraction of the total
available plotting area (in the direction perpendicular to the bars) to be used. If not
specified, the full available areais used.

COLORS

A vector, the same size as Values, containing the color index to be used for each bar.
If not specified, the colors are selected based on spacing the color indices aswidely
as possible within the range of available colors (specified by !D.N_COLORS).

OUTLINE
If set, this keyword specifies that an outline should be drawn around each bar.
OVERPLOT

If set, this keyword specifies that the bar plot should be overplotted on an existing
graph.

ROTATE

If set, this keyword indicates that horizontal rather than vertical bars should be drawn.
The bases of horizontal bars are on the left, “ Y™ axis and the bars extend to the right.

IDL Reference Guide BAR_PLOT

136

Chapter 3: Procedures and Functions

TITLE

A string containing the main title for the bar plot.

XTITLE

A string containing the title for the X axis.

YTITLE

A string containing the title for the Y axis.

Examples

BAR_PLOT

By using the overplotting capability, it is relatively easy to create stacked bar charts,
or different groups of bars on the same graph.

Thefollowing example creates atwo-dimensional array of 5 columnsand 8 rows, and
creates a plot with 5 bars, each of whichisa*“stacked” composite of 8 sections.

; Handl e TrueCol or di spl ays:
DEVI CE, DECOVPOSED=0

;Load col or table:
LOADCT, 5

; Make axes bl ack:
I P. COLOR=0

;Create 5-colum by 8-row array:
array = | NDGEN(5, 8)

;Create a 2D array, equal in size to array, that has identical

;col or index val ues across each rowto ensure that the same itemis
;represented by the sane color in all bars:

colors = I NTARR(5, 8)

FOR 1 =0, 7 DO colors[*,1]=(20*1)+20

;Wth arrays and col ors defined, create stacked bars (note that
;the nunmber of rows and columms is arbitrary):

; Scal e range to accommpdate the total bar |engths:
'Y.RANCGE = [0, MAX(array)]

nrows = N_ELEMENTS(array[O0, *])

base = | NTARR(nr ows)

IDL Reference Guide

Chapter 3: Procedures and Functions 137

FOR I = 0, nrows-1 DO BEG N
BAR PLOT, array[*,1], COLORS=colors[*,1], BACKGROUND=255, $
BASELI NES=base, BARW DTH=0. 75, BARSPACE=0. 25, OVER=(| GTI 0)
base = array[*, 1]
ENDFOR

; To plot each row of array as a clustered group of bars within the
; same graph, use the BASERANGE keyword to restrict the available
;plotting region for each set of bars, where NCOLS is the nunber of
;colums in array. (In this exanple, each group uses the sane set
;of colors, but this could easily be changed.):

ncol s = N_ELEMENTS(array[*, 0])
FOR I =0, nrows-1 DO BEG N
BAR PLOT, array[*,1], COLORS=colors[*,1], BACKGROUND=255, $
BARW DTH=0. 75, BARSPACE=0. 25, BAROFFSET=l *(1. 4*ncols), $
OVER=(1 GT 0), BASERANGE=0. 12
ENDFOR

Version History

Pre4.0 Introduced

See Also

PLOT, PSYM Graphics Keyword

IDL Reference Guide BAR_PLOT

138

BEGIN...END

Chapter 3: Procedures and Functions

The BEGIN...END statement defines a block of statements. A block of statementsis
agroup of statementsthat istreated as a single statement. Blocks are necessary when
more than one statement is the subject of a conditional or repetitive statement. For
more information on using BEGIN...END and other IDL program control statements,
see Chapter 7, “Program Control” in the Building IDL Applications manual.

Syntax

BEGIN

statements

END | ENDIF | ENDELSE | ENDFOR | ENDREP | ENDWHILE

The END identifier used to terminate the block should correspond to the type of
statement in which BEGIN is used. The following table lists the correct END
identifiersto use with each type of statement.

END

Statement Identifier Example

ELSE BEGIN ENDELSE I'F (0) THEN A=1 ELSE BEG N
ENDé[éE

FOR variable=init, limit DO ENDFOR FOR i =1,5 DO BEG N

BEGIN PRI NT, array[i]
ENDFOR

IF expression THEN BEGIN ENDIF I'F (0) THEN BEG N
END'IA\I_Zl

REPEAT BEGIN ENDREP REPEAT BEiBI N
ENDQEI_D GNTIi A GT B

Table 3-1: Types of END Identifiers
BEGIN...END IDL Reference Guide

Chapter 3: Procedures and Functions

139

END
Statement Identifier Example
WHILE expression DO BEGIN | ENDWHIL | WH LE ~ EOF(1) DO BEG N
E READF, 1, A B, C
ENDVH LE
LABEL: BEGIN END LABEL1: BEG N
PRI NT, A
END
case_expression; BEGIN END CASE name OF
"Me': BEG N
PRI NT, ' St ooge'
END
ENDCASE
switch_expression: BEGIN END SW TCH nane OF
'Moe': BEG N
PRI NT, ' St ooge'
END
ENDSW TCH

Table 3-1: Types of END Identifiers (Continued)

Note

CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Version History

Original Introduced

IDL Reference Guide

BEGIN...END

140 Chapter 3: Procedures and Functions

BESELI

The BESELI function returns the | Bessel function of order N for the argument X.
The BESELI function is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELI(X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

Note
If the function does not converge for an element of X, the corresponding element of

the Result array will be set to the |EEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range -709 to 709.

Note
If X is negative then N must be an integer (either positive or negative).

N

A scalar or array specifying the order of the Bessel function to calculate. Valuesfor N
can beintegers or real numbers. If N is negative then it must be an integer.

BESELI IDL Reference Guide

Chapter 3: Procedures and Functions 141

Keywords

DOUBLE

Set this keyword equal to one to return adouble-precision result, or to zero to return a
single-precision result. The computationswill always be done using double precision.
The default isto return a single-precision result if both inputs are single precision,
and to return a double-precision result in al other cases.

ITER

Set this keyword equal to anamed variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the |EEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

The following example plotsthe | and K Bessel functions for orders 0, 1 and 2:
X = FI NDGEN(40) / 10

;Plot | and K Bessel Functions:
PLOT, X, BESELI(X, 0), MAX VALUE=4, $

TITLE = 'l and K Bessel Functions'
OPLOT, X, BESELI(X, 1)
OPLOT, X, BESELI(X, 2)
OPLOT, X, BESELK(X, 0), LINESTYLE=2
OPLOT, X, BESELK(X, 1), LINESTYLE=2
OPLOT, X, BESELK(X, 2), LINESTYLE=2

; Annotate plot:

xcoor ds [.18, .45, .95, 1.4, 1.8, 2.4]

ycoor ds [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]

labels = ["!8KIXIDO',"!8KIXIDL',"!18KIXID2',"'18I!X DO,
rgrrxipl, 18l Xipe']

XYQUTS, xcoords, ycoords, |abels, /DATA

IDL Reference Guide BESELI

142

Chapter 3: Procedures and Functions

This resultsin the following plot:

| ond K Bessel Functions

T T T

Figure 3-8: I and K Bessel Functions.

For an example calculating the accuracy of the Bessel function, see “ Example 2” for
the BESEL Jroutine.

Version History

Original

Introduced

5.6

Added DOUBLE and ITER keywords

See Also

BESELJ, BESELK, BESELY

BESELI

IDL Reference Guide

Chapter 3: Procedures and Functions 143

BESELJ

The BESEL J function returns the J Bessel function of order N for the argument X.
The BESELJfunction is adapted from “ SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELJ(X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If X is double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of

the Result array will be set to the |EEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range -10° to 108.

Note
If X isnegative then N must be an integer (either positive or negative).

N

A scalar or array specifying the order of the Bessel function to calculate. Vauesfor N
can be integers or real numbers. If N is negative then it must be an integer.

IDL Reference Guide BESELJ

144

Chapter 3: Procedures and Functions

Keywords

DOUBLE

Set this keyword equal to one to return adouble-precision result, or to zero to return a
single-precision result. The computationswill always be done using double precision.
The default isto return a single-precision result if both inputs are single precision,
and to return a double-precision result in al other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the |EEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

BESELJ

Example 1

The following example plotsthe Jand Y Bessel functions for orders 0, 1, and 2:
X = FI NDGEN(100)/ 10

;Plot J and Y Bessel Functions:
PLOT, X, BESELJ(X, 0), TITLE = "'J and Y Bessel Functions'

OPLOT, X, BESELJ(X, 1)
OPLOT, X, BESELJ(X, 2)
OPLOT, X, BESELY(X, 0), LINESTYLE=2
OPLOT, X, BESELY(X, 1), LINESTYLE=2
OPLOT, X, BESELY(X, 2), LINESTYLE=2

; Annotate plot:

xcoords = [1, 1.66, 3, .7, 1.7, 2.65]

ycoords = [.8, .62,.52, -.42, -.42, -.42]

labels = ['!18JIXID0","!8J!IXIDL',"18JI X D2',"'!18Y! X DO,
gyl Xipl, 18y X D2']

XYQUTS, xcoords, ycoords, |abels, /DATA

IDL Reference Guide

Chapter 3: Procedures and Functions 145

This resultsin the following plot:

J and ¥ Bessel Funclions
1.0 — 1 - - T T T 1

Figure 3-9: The J and Y Bessel Functions.

Example 2

Different order Bessel functions have recurrence relationships to each other. These
rel ationships can be used to determine how accurately IDL is computing the Bessel
functions. In the following example, the recurrence relationships for each order are
set to zero and the left side of the equations are plotted. The plots show how close the
left side of the equations are to zero, and therefore, how accurate IDL’s computation
of the Bessel functions are.

This example uses the following recurrence relationship:
X(J,_1(X)+J,41(X))=2nd,(x) = 0

where J(X) isthe Bessel function of the first kind of order n—1, n, or n+ 1. (Similar
recurrence relationships could be used for the other forms of the Bessel function.)
Results are plotted for n equal to 1 through 6.

IDL Reference Guide BESELJ

146 Chapter 3: Procedures and Functions

PRO Anal yzi ngBESELJ

; Derive x val ues.
x = (DI NDGEN(1000) + 1.)/100.

; Initialize display w ndow.
WNDOW 0, TITLE = 'Bessel Functions'

; Display the first 8 orders of the Bessel function of
; the first Kkind.
PLOT, x, BESELJ(x, 0), /XSTYLE, /YSTYLE, $
XTITLE = "x', YTITLE = "f(x)"', $
TI TLE = ' Bessel Functions of the First Kind'

OPLOT, x, BESELJ(x, 1), LINESTYLE =1
OPLOT, x, BESELJ(x, 2), LINESTYLE = 2
OPLOT, x, BESELJ(Xx, 3), LINESTYLE = 3
OPLOT, x, BESELJ(x, 4), LINESTYLE = 4
OPLOT, x, BESELJ(x, 5), LINESTYLE =5
OPLOT, x, BESELJ(x, 6), LINESTYLE = 0
OPLOT, x, BESELJ(x, 7), LINESTYLE =1

; Initialize display window for recurrence rel ations.
W NDOW 1, XSIZE = 896, YSIZE = 512, $

TITLE = 'Testing the Recurrence Rel ations'
[P.MULTI =[0, 2, 3, 0, 0]

o Initialize title variable.
nsString =['0", "1, 2", "3, "4, '5" ["6, '7']

; Display recurrence relationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FORn =1, 6 DO BEG N
equation = x*(BESELJ(x, (n - 1)) + $
BESELJ(x, (n + 1))) - 2.*FLOAT(n)*BESELJ(x, n)
PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $

TITLE="'n =" + nString[n] +': Oders of ' + $
nString[n - 1] + ', ' + nString[n] +', and ' + $
nString[n + 1]
PRINT, 'n ="' + nString[n] +': '
PRINT, 'minimum=", M N(equation)
PRI NT, 'maxi num =", MAX(equati on)
ENDFOR

; Return display window back to its default setting, one
; display per wi ndow.
'P. MULTI =0

END

BESELJ IDL Reference Guide

Chapter 3: Procedures and Functions 147

The results for this example are shown in the following figure.

n=1: Orders of 0. 1, and 2 _ n= 3 Orders of 1.2 and 3
1501

Figure 3-10: Recurrence Relationship for J(x)

All of these plots show that this Bessel function is calculated accurately within
machine tolerance.

Version History

Origind Introduced
5.6 Added DOUBLE and ITER keywords
See Also

BESELI, BESELK, BESELY

IDL Reference Guide BESELJ

148 Chapter 3: Procedures and Functions

BESELK

The BESELK function returnsthe K Bessdl function of order N for the argument X.
The BESELK function is adapted from “SPECFUN - A Portable FORTRAN
Package of Specia Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELK(X, N[, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If Xis double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of

the Result array will be set to the |EEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be greater than or equal to zero.

N

A scalar or array specifying the order of the Bessel function to calculate. Vauesfor N
can be integers or real numbers. If N is negative then it must be an integer.

BESELK IDL Reference Guide

Chapter 3: Procedures and Functions 149

Keywords

DOUBLE

Set this keyword equal to one to return adouble-precision result, or to zero to return a
single-precision result. The computationswill always be done using double precision.
The default isto return a single-precision result if both inputs are single precision,
and to return a double-precision result in al other cases.

ITER

Set this keyword equal to anamed variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the |EEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

The following example plotsthe | and K Bessel functions for orders 0, 1 and 2:
X = FI NDGEN(40) / 10

;Plot | and K Bessel Functions:
PLOT, X, BESELI(X, 0), MAX VALUE=4, $

TITLE = 'l and K Bessel Functions'
OPLOT, X, BESELI(X, 1)
OPLOT, X, BESELI(X, 2)
OPLOT, X, BESELK(X, 0), LINESTYLE=2
OPLOT, X, BESELK(X, 1), LINESTYLE=2
OPLOT, X, BESELK(X, 2), LINESTYLE=2

; Annotate plot:

xcoor ds [.18, .45, .95, 1.4, 1.8, 2.4]

ycoor ds [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]

labels = ["!8KIXIDO',"!8KIXIDL',"!18KIXID2',"'18I!X DO,
rgrrxipl, 18l Xipe']

XYQUTS, xcoords, ycoords, |abels, /DATA

IDL Reference Guide BESELK

150

Chapter 3: Procedures and Functions

This resultsin the following plot:

| ond K Bessel Functions

T T T

Figure 3-11: | and K Bessel Functions.

For an example calculating the accuracy of the Bessel function, see “ Example 2” for
the BESEL Jroutine.

Version History

Original

Introduced

5.6

Added DOUBLE and ITER keywords

See Also

BESELI, BESELJ, BESELY

BESELK

IDL Reference Guide

Chapter 3: Procedures and Functions 151

BESELY

The BESELY function returnsthe Y Bessel function of order N for the argument X.
The BESELY function is adapted from “SPECFUN - A Portable FORTRAN
Package of Specia Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELY (X, N[, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If X is double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of

the Result array will be set to the |EEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range 0 to 108.

N

A scalar or array specifying the order of the Bessel function to calculate. Vauesfor N
can be integers or real numbers. If N is negative then it must be an integer.

IDL Reference Guide BESELY

152

Chapter 3: Procedures and Functions

Keywords

DOUBLE

Set this keyword equal to one to return adouble-precision result, or to zero to return a
single-precision result. The computationswill always be done using double precision.
The default isto return a single-precision result if both inputs are single precision,
and to return a double-precision result in al other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the |EEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

BESELY

The following example plotsthe Jand Y Bessel functions for orders 0, 1, and 2:
X = FI NDGEN(100)/ 10

;Plot J and Y Bessel Functions:
PLOT, X, BESELJ(X, 0), TITLE = "'J and Y Bessel Functions'

OPLOT, X, BESELJ(X, 1)
OPLOT, X, BESELJ(X, 2)
OPLOT, X, BESELY(X, 0), LINESTYLE=2
OPLOT, X, BESELY(X, 1), LINESTYLE=2
OPLOT, X, BESELY(X, 2), LINESTYLE=2

; Annotate plot:

xcoor ds [1, 1.66, 3, .7, 1.7, 2.65]

ycoor ds [.8, .62,.52, -.42, -.42, -.42]

labels = ['18J!IXID0","!8J!XIDL',"18JI X D2',"'!18Y! X DO,
gyl Xipl, 18y Xib2']

XYQUTS, xcoords, ycoords, |abels, /DATA

IDL Reference Guide

Chapter 3: Procedures and Functions 153

This resultsin the following plot:

J and ¥ Bessel Funclions
1.0 — 1 - - T T T 1

Figure 3-12: The J and Y Bessel Functions.

For an example calculating the accuracy of the Bessel function, see “Example 2” for
the BESEL Jroutine.

Version History

Original Introduced
5.6 Added DOUBLE and ITER keywords
See Also

BESELI, BESELJ, BESELK

IDL Reference Guide BESELY

154

Chapter 3: Procedures and Functions

BETA

BETA

The BETA function returns the value of the beta function B(Z, W). Thisroutineis
written in the IDL language. Its source code can befound inthefile bet a. pr o inthe
|'i b subdirectory of the IDL distribution.

Syntax
Result = BETA(Z, W[, /DOUBLE])
Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of Z and W, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If both of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

Z, W

The point at which the betafunction isto be evaluated. Z and W can be scalar or array.
Z or W may be complex.

Keywords
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established

IDL Reference Guide

Chapter 3: Procedures and Functions

by 'CPU for asingleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

To evaluate the beta function at the point (1.0, 1.1) and print the result:
PRI NT, BETA(1.0, 1.1)
IDL prints:
0. 909091
The exact solution is:
((1.00 * .95135077) / (1.10 * .95135077)) = 0.909091.

Version History

155

4,0.1 I ntroduced

5.6 Added Z and W arguments to accept complex input

See Also

GAMMA, IBETA, IGAMMA, LNGAMMA

IDL Reference Guide

BETA

156 Chapter 3: Procedures and Functions

BILINEAR

The BILINEAR function uses abilinear interpolation algorithm to compute the value
of adataarray at each of a set of subscript values.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
bi li near. prointheli b subdirectory of the IDL distribution.

Syntax
Result = BILINEAR(P, IX, JY [, MISSING=value])

Return Value

This function returns atwo-dimensional interpolated array of the same type as the
input array.

Arguments

P
A two-dimensional data array.
IXand JY

Arrays containing the X and Y “virtual subscripts’ of P for which to interpolate
values. IX and JY can be either of the following:

¢ One-dimensional, n-element floating-point arrays of subscriptsto look upinP.
One-dimensional arrayswill be converted to two-dimensional arraysin such a
way that 1X contains n identical rows and JY contains n identical columns.

e Two-dimensional, n-element floating-point arrays that uniquely specify the X
subscripts (the 1 X array) and the Y subscripts (the JY array) of the points to be
computed from the input array P.

In either case, | X must satisfy the expressions
0<=MIN(IX) <NO and 0 < MAX(IX) <=NO

where NO is the total number of columnsin the array P.

BILINEAR IDL Reference Guide

Chapter 3: Procedures and Functions 157

JY must satisfy the expressions
0<=MIN@Y) <MO and 0 < MAX(JY) <=MO
where MO is the total number of rowsin the array P.

It is better to use two-dimensional arrays for 1 X and JY because the algorithm is
somewhat faster. If 1X and JY are specified as one-dimensional, the returned two-
dimensional arrays X and JY can be re-used on subsequent calls to take advantage of
the faster 2D agorithm.

Keywords
MISSING

The value to return for elements outside the bounds of P. If this keyword is not
specified, interpolated positions that fall outside the bounds of the array P - that is,
elements of the I X or JY arguments that are either less than zero or greater than the
largest subscript in the corresponding dimension of P - are set equal to the value of
the nearest element of P.

Note
If MISSING valueis set to acomplex number, IDL uses only the real part.

Examples

Create a 3 x 3 floating point array P:
P = FI NDGEN(3, 3)

Suppose we wish to find the value of apoint half way between the first and second
elements of the first row of P. Create the subscript arrays I X and JY:

| X 0.5 ;Define the X subscript.

JY 0.0 ;Define the Y subscript.

Z = BILINEAR(P, IX, JY) ;lInterpolate.

PRINT, Z ;Print the value at the point I X, JY within P.

IDL prints:

0. 500000
Suppose we wish to find the values of a2 x 2 array of pointsin P. Create the subscript
arrays | X and JY:

IX=1[[0.5, 1.9], [1.1, 2.2]] ;Define the X subscripts.

Jy = [[0.1, 0.9], [1.2, 1.8]] ;Define the Y subscripts.
Z = BILINEAR(P, I X, JY) ;lInterpolate.

IDL Reference Guide BILINEAR

158

Chapter 3: Procedures and Functions

PRINT, Z ;Print the array of val ues.

IDL prints:

0. 800000
4.70000

4. 60000
7.40000

Version History

Original

Introduced

6.1

Added MISSING keyword

See Also

INTERPOL, INTERPOLATE, KRIG2D

BILINEAR

IDL Reference Guide

Chapter 3: Procedures and Functions 159

BIN_DATE

The BIN_DATE function converts a standard form ASCII date/time string to abinary
string.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
bi n_date. prointhel i b subdirectory of the IDL distribution.

Syntax
Result = BIN_DATE(Ascii_Time)

Return Value

The function returns a six-element integer array where:
e Element Oistheyear (e.g., 1994)
¢ Element 1 isthe month (1-12)
e Element 2isthe day (1-31)
¢ Element 3isthe hour (0-23)
e Element 4 is minutes (0-59)

* Element 5is seconds (0-59)
Arguments
Ascii_Time

A string containing the date/time to convert in standard ASCII format. If this
argument is omitted, the current date/timeis used. Standard form is a 24 character
string:

DOW MON DD HH: MM SS YYYY

where DOW isthe day of the week, MON is the month, DD is the day of month,
HH:MM:SSisthe timein hours, minutes, second, and YYYY isthe year.

Keywords

None.

IDL Reference Guide BIN_DATE

160 Chapter 3: Procedures and Functions

Version History

Pre4.0 Introduced

See Also

CALDAT, JULDAY, SYSTIME

BIN_DATE IDL Reference Guide

Chapter 3: Procedures and Functions 161

BINARY_TEMPLATE

The BINARY_TEMPLATE function presents agraphical user interface which
allows the user to interactively generate atemplate structure for use with
READ_BINARY.

The graphical user interface allows the user to define one or more fieldsin the binary
file. Thefile may be big, little, or native byte ordering.

Individual fields can be edited by the user to define the dimensionality and type of
datato be read. Where necessary, fields can be defined in terms of other previously
defined fields using IDL expressions. Fields can also be designated as “ Verify”.
When afileisread using atemplate with “ Verify” fields, those fields will be checked
against a user defined value supplied via the template.

Note
Greater than (“>") and less than (“<") symbols can appear in the “New Field” and
the “Modify Field” dialogs where the offset value is displayed. The presence of
either symbol indicates that the supplied offset value is “relative” from the end of
the previous field or from the initial position in the file. Greater than means offset
forward. Less than means offset backward. “>0" and “<0” are synonymous and
mean “offset zero bytes’. You can delete these special symbols (thereby indicating
that their corresponding offset value is not “relative’) by typing over them in the
“New Field” or “Modify Field” dialogs.

Syntax

Result = BINARY_TEMPLATE ([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, N_ROWS=rows] [, TEMPLATE=variable])

Return Value
This function returns an anonymous structure that contains the template. If the user

cancels out of the graphical user interface and no initial template was supplied, it
returns zero.

IDL Reference Guide BINARY_TEMPLATE

162 Chapter 3: Procedures and Functions

Arguments

Filename

A scalar string containing the name of a binary file which may be used to test the
template. Asthe user interacts with the BINARY _TEMPLATE graphical user
interface, the user’s input will be tested for correctness against the binary datain the
file. If filename is not specified, adialog allows the user to choose thefile.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “Cancel” button, or O otherwise.

GROUP

The widget ID of an existing widget that serves as “group leader” for the
BINARY_TEMPLATE interface. When a group leader iskilled, for any reason, all
widgetsin the group are also destroyed.

N_ROWS

Set this keyword to the number of rows to be visiblein the BINARY_TEMPLATE'’s
table of fields.

Note
The N_ROWS keyword is analogous to the WIDGET_TABLE and the

Y_SCROLL_SIZE keywords.

TEMPLATE

Set this keyword to structure variable containing an initial template (usualy from a
previouscall to BINARY TEMPLATE). Thistemplate structurewill beusedtofill in
theinitia fieldsin the new BINARY_TEMPLATE. If TEMPLATE is specified and
the user cancels out of the dialog, the specified template will be returned as the
Result.

BINARY_TEMPLATE IDL Reference Guide

Chapter 3: Procedures and Functions 163

Examples

Use the following command to launch the Binary Template dialog so that a structure
can be defined for thefile, head. dat :

sTenpl ate = Bl NARY_TEMPLATE(FI LEPATH(' head. dat', $
SUBDI RECTORY=[' exanpl es', 'data']))

Note
If no filename is supplied in the call to the BINARY_TEMPLATE function, afile
selection dialog is displayed prior to the first BINARY_TEMPLATE screen.

Using the BINARY_TEMPLATE Interface

A binary template describes of the format of the datain abinary file, and can be used
to successfully import binary data from any file that shares has structure. The Binary
Template dialog allows you to specify characteristics of each field within a binary
file, and returns a structure containing the template information. The
READ_BINARY function accesses the datain abinary file, using the template to
determine how to import the data correctly. (You only have to explicitly call
READ_BINARY when you call BINARY_TEMPLATE from the command line.
When you start the Binary Template dialog from an iTool or the IDLDE, the
READ_BINARY routineis called for you.)

After starting the Binary Template dialog using one of the methods described in
“Launching the Binary Template Dialog” in Chapter 6 of the Using IDL manual,
complete the following steps to create the template;

1. Select thebinary file. Inthe Select Fileto Open dialog, select sur f ace. dat
from the exanpl es\ dat a subdirectory of your IDL distribution. Thisfile
contains an integer array of elevation data of the Maroon Bells mountains, a
group of mountains located among the Rocky Mountains of Colorado.The
Binary Template window is displayed.

2. Definetemplate and data characteristics. Define the following in this
example before defining field information:

e Template Nameof sMar Bel | sTenpl at e

* File'sbyteorderingisset to Little Endian

IDL Reference Guide BINARY_TEMPLATE

164 Chapter 3: Procedures and Functions

The following table describes each of these options.

Template | Enter aname that describes the template. Thisfield is
name optional.

File'sbyte | Select the byte order of the data:

ordering | Native — the storage method is native to the machine you
are currently running. Little Endian for Intel
microprocessor-based machines and Big Endian for

M otorola microprocessor-based machines. No byte
swapping will be performed.

Little Endian — the storage method where the |east
significant byte appearsfirst in the number. Given the
hexadecima number A02B, the Little Endian method stores
it as 2BAO. Specify thisif the original file was created on a
machine that uses an Intel microprocessor.

Big Endian — the storage method where the most
significant byte appears first in the number. Given the
hexadecimal number A02B, the big endian method stores it
as A02B. Specify thisif the original file was created on a
machine that uses a M otorola microprocessor.

See“Filesand I/0O” in Chapter 9 of the Building IDL
Applications manual for more information on byte ordering.

BINARY_TEMPLATE IDL Reference Guide

Chapter 3: Procedures and Functions 165

##l Binary Template [surface.dat] [%]
Template name: ISMarbeIIsTempIate File: byte ardering: ILittIe Endian 'l

Mew Field... | Modify Field... | Bemove Field

Offset Dimensions Return

6] | Cancel |

Figure 3-13: Binary Template

3. Open theNew Field dialog. Fields are read in the order in which they are
listed in the main dialog for BINARY _TEMPLATE, with offsets being added
to the current file position pointer before each field isread. Click New Field...
to enter the description of a new field.

Note

If afield has already been defined, clicking in the Return column will toggle
the value of the field between Yes and No. Fields that are not marked for
return can be used for calculations by other fields in the template. At least
one field must be marked Yes for return in order for the
BINARY_TEMPLATE function to return atemplate.

4. Define characteristics of thefield. Use the New Field dialog to define the
data type and dimensions of the field as well as any offsets. In this example,
configure the following:

Field nameismar bel | s

Typeislnteger

Offset is0 From beginning of file
FieldisReturned in the result when read

IDL Reference Guide BINARY_TEMPLATE

166 Chapter 3: Procedures and Functions

*« Number of dimensionsvalueis 2, and are defined as 350 and 450
respectively

The following table describes the New Field dialog options:

Field name Enter a name that describes the data field.

Type Select the datatype of the field from adroplist that
offersthe following IDL types: byte, integer, long,
float, double, complex, dcomplex, uint, ulong,
long64 and ulong64. Strings are read as an array of
bytes for later conversion to type STRING.

Offset Specify the data offset using integer values, field
names, or any valid IDL expression.

Absolute integer — defines afixed location (in
bytes) from the beginning of thefile or theinitial
file position for an externally opened file.

Relative integer — uses a preceding > or <
character, to indicate a positive (>) or negative (<)
byte offset relative to the current file position
pointer after the previous field (if any) is read.

Expression — can include the names of fields that
will be read before the current field — that is, the
field number of the referenced field must be lower
than the field number of the field being defined.

From beginning of file— read from the
beginning of the file plus any offset.

From initial position in file/From end of
previousfile— read from the beginning of thefile
or from the end of the previous field plus any
offset.

BINARY_TEMPLATE IDL Reference Guide

Chapter 3: Procedures and Functions

167

When fileis
read...

Returned in the result — select this to return the
field when thefileis read

Verified asbeing equal to — select this and
define the condition. The Verify field can contain
an integer, field name, or any valid IDL
expression. Only scalar fields can be verified.
READ_BINARY reports an error if averification
fails.

Number of
dimensions

Select the number of dimensions of the field
ranging from O (scalar) to 8 (which isthe
maximum number of dimensions that an IDL
variable can have.) The Size of each dimension can
be an integer, field name, or any valid IDL
expression. Select Reverseto read any of thefirst
three dimensions of array datain reversed order.

Note

If BINARY_TEMPLATE iscalled by aprogram that is running in the IDL
Virtual Machine, the Offsets, Verify, and Size fields can contain integers or
field names, but not an IDL expression.

IDL Reference Guide

BINARY_TEMPLATE

168

#ill| New Field

Chapter 3: Procedures and Functions

Field name: Imarbells

Type: | Integer (16 bits) =]

Offzet: |>D bytes

€~ From beginning of file
& From initial position in file

Offzet can be an integer or an expression
involving fields defined earlier in the template.

Wwhen a file iz read, this field should be:

¥ Retured in the result

I™ | Werified as being equal to: I

The Yerify field can be a number or an expression
involving fields defined earlier in the template.

Mumber of dimensions: |2 'I
Tst: Size: |350 [~ Reverss
2nd: Size: |450 [~ Reverss
Srd: Sizes I [T Feverss
Athir Sizes I
it Sizes I
Eithir Sizes I
i Sizes I
Httir Sizes I
E ach dimension can be an integer or an expression
involving fields defined earlier in the template.

ak. | Cancel |

Figure 3-14: Binary Template - New Field

5. Createthetemplate. Click OK to create the new field definition. Thisfile
containsasingle field so click OK on the Binary Template dialog to create
the template. If needed, you could click New Field to define additional data

fields.

The BINARY_TEMPLATE function returns a structure variable containing the
template. The result of the previous actions depends on the location from which you
launched the Binary Template dialog. The READ_BINARY function, which reads
datafrom afile according to the template specification, is automatically called when
you access the Binary Template dialog from iTools or from the Import Binary
macro. From the command line, you must explicitly read the binary data with the

template specification.

After defining the structure of your binary data using the Binary Template dialog,

refer to the appropriate section:

e iTools binary data access— the binary datais read and placed in the Data
Manager. If it is not automatically displayed, use the Insert Visualization
dialog to display fields of the data. See “Inserting Visualizations’ in Chapter 3
of theiTool User’s Guide manual for details.

BINARY_TEMPLATE

IDL Reference Guide

Chapter 3: Procedures and Functions 169

e Import Binary macro data access — the binary datais placed in a structure.
You can access fields of the datausing avariable_name.element_name syntax.
See " Using Macros to Import Binary Files’ in Chapter 6 of the Using IDL
manual.

e Command line binary data access — the template is a structure defining the
format of the binary data. Accessthe datausing READ_BINARY, and specify
the template (or other characteristics) as parameters of the data access
operation. See “Working with a READ_ASCII Data Structure” on page 1920

for details.

Note
You can create a SAVE file of atemplate in order to use it from session to session.

See “Example: Create a SAVE File of a Custom ASCII Template” on page 114 for a
related example.

Version History

53 Introduced

See Also

READ_BINARY, ASCII_TEMPLATE

IDL Reference Guide BINARY_TEMPLATE

170 Chapter 3: Procedures and Functions

BINDGEN

The BINDGEN function creates a byte array with the specified dimensions. Each
element of the array is set to the value of its one-dimensional subscript.

Syntax
Result = BINDGEN(D, [, ...,.Dg])
Return Value
This function returns a byte array with the specified dimensions.
Arguments
D

Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments or
array elements are not integer values, IDL will convert them to integer values before
creating the new array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for a singleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

BINDGEN IDL Reference Guide

Chapter 3: Procedures and Functions 171

Examples

To create afour-element by four-element byte array, and store the result in the
variable A, enter:

A = BI NDGEN(4, 4)

Each element in A holds the value of its one-dimensional subscript. That is, if you
enter the command:

PRINT, A
IDL prints the result:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Version History

Original Introduced

See Also

CINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN

IDL Reference Guide BINDGEN

172 Chapter 3: Procedures and Functions

BINOMIAL

The BINOMIAL function computes the probability that in a cumulative binomial
(Bernoulli) distribution, a random variable X is greater than or equal to a user-
specified value V, given N independent performances and a probability of occurrence
or success P in asingle performance:
N
Probability(X>V) = Z

x=V

N!

X! (N =x)! PiL-p) ™

Thisroutineiswritten in the IDL language. Its source code can be found in the file
bi noni al . prointhel i b subdirectory of the IDL distribution.

Syntax
Result = BINOMIAL(V, N, P [, /DOUBLE] [, /GAUSSIAN])

Return Value

This function returns a single- or double-precision floating point scalar or array that
contains the value of the probability.

Arguments

Vv

A non-negative integer specifying the minimum number of times the event occursin
N independent performances.

N

A non-negative integer specifying the number of performances.

P

A non-negative single- or double-precision floating-point scalar or array, in the
interval [0.0, 1.0], that specifies the probability of occurrence or success of asingle
independent performance.

BINOMIAL IDL Reference Guide

Chapter 3: Procedures and Functions 173

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

GAUSSIAN

Set this keyword to use the Gaussian approximation, by using the normalized variable
Z=(V—-NP)/SQRT(NP(1—P)).

Note
The Gaussian approximation is useful when N is large and neither P nor (1-P) is
close to zero, where the binomia summation may overflow. If GAUSSIAN is not
explicitly set, and the binomial summation overflows, then BINOMIAL will
automatically switch to using the Gaussian approximation.

Examples

Compute the probability of obtaining at least two 6sin rolling adie four times. The
result should be 0.131944.

result = BINOMAL(2, 4, 1.0/6.0)

Compute the probability of obtaining exactly two 6sinrolling adie four times. The
result should be 0.115741.

result = BINOMAL(2, 4, 1./6.) - BINOMAL(3, 4, 1./6.)

Compute the probability of obtaining three or fewer 6sinrolling adiefour times. The
result should be 0.999228.

result = BINOMAL(O, 4, 1./6.) - BINOMAL(4, 4, 1./6.)

Version History

Pre4.0 Introduced

See Also

CHISQR_PDF, F_PDF, GAUSS PDF, T_PDF

IDL Reference Guide BINOMIAL

174 Chapter 3: Procedures and Functions

BIT FFS

The BIT_FFSfunction returns the index of the first bit set (non-zero) in its integer
argument.

Syntax
Result = BIT_FFS(Value)
Return Value

BIT_FFS returns the index of the first bit set in Value. Bits are numbered starting at
one (the least significant bit). Zero (0) isreturned if Value has no bits set. If Valueis
an array, the result is an array with the same structure, where each element contains
the index of the first bit set in the corresponding element of Value.

Arguments

Value

A scalar or array of any integer type.
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by ICPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

BIT_FFS IDL Reference Guide

Chapter 3: Procedures and Functions 175

Example

Binary integer arithmetic has the property that any integer value with a single bit set
isapower of 2. For example, the value 1024 is equivalent to 21°. The following
statement uses BIT_FFSto determine the power to which 2 must be raised to yield
1024

p = BIT_FFS(1024) - 1
PRINT, FORMAT=' (%279 = %l")', p, 2°p

IDL prints:
2710 = 1024

Version History

6.2 I ntroduced

IDL Reference Guide BIT_FFS

176 Chapter 3: Procedures and Functions

BIT_POPULATION

The BIT_POPULATION function returns the number of set (non-zero) bitsin its
integer argument.

Syntax
Result = BIT_POPULATION(\alue)
Return Value

BIT_POPULATION returns the number of set (non-zero) bitsin Value. If Valueisan
array, the result is an array with the same structure, where each element contains the
count of non-zero bitsin the corresponding element of Value.

Arguments

Value

A scalar or array of any integer type.
Keywords

Thread Pool Keywords

Thisroutine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for detalils.

Example

The following statement displays the number of bitsin an IDL long integer:
PRI NT, Bl T_POPULATION(' ffffffff'xl)

IDL prints:
32

BIT_POPULATION IDL Reference Guide

Chapter 3: Procedures and Functions 177

Version History

6.2 I ntroduced

IDL Reference Guide BIT_POPULATION

178 Chapter 3: Procedures and Functions

BLAS_AXPY

The BLAS AXPY procedure updates an existing array by adding a multiple of
another array. It can aso be used to update one or more one-dimensional subvectors
of an array according to the following vector operation:

Y =aX+Y

where aisascale factor and X isan input vector.
BLAS_AXPY can be faster and use less memory than the usual IDL array notation
(e.g. Y=Y+A* X) for updating existing arrays.

Note

BLAS AXPY ismuch faster when operating on entire arrays and rows, than when
used on columns or higher dimensions.

Syntax
BLAS AXPY, Y, A, X[, D1, Locl [, D2, Range]]
Arguments
Y

The array to be updated. Y can be of any numeric type. BLAS AXPY does not
change the size and type of Y.

A

The scaling factor to be multiplied with X. A may be any scalar or one-element array
that IDL can convert to the type of X. BLAS_AXPY does not change A.

X

The array to be scaled and added to array Y, or the vector to be scaled and added to
subvectors of Y.

D1

An optional parameter indicating which dimension of Y isto be updated.

BLAS_AXPY IDL Reference Guide

Chapter 3: Procedures and Functions 179

Locl

A variable with the same number of elements as the number of dimensions of Y. The
Locl and D1 arguments together determine which one-dimensional subvector (or
subvectors, if D1 and Range are provided) of Y isto be updated.

D2

An optional parameter, indicating in which dimension of Y a group of one-
dimensional subvectors are to be updated. D2 should be different from D1.

Range

A variable containing D2 indices indicating where to put one-dimensional updates of
Y.

Keywords
None
Examples

The following examples show how to usethe BLAS AXPY procedure to add a
multiple of an array, add a constant, and a group of subvectors.

seed = 5L
Create amultidimensional array:
A = FINDGEN(4, 5, 2)

Print A:
PRI NT, A
IDL prints:
0. 000000 1. 00000 2. 00000 3. 00000
4. 00000 5. 00000 6. 00000 7. 00000
8. 00000 9. 00000 10. 0000 11. 0000
12. 0000 13. 0000 14. 0000 15. 0000
16. 0000 17. 0000 18. 0000 19. 0000
20. 0000 21. 0000 22. 0000 23. 0000
24. 0000 25. 0000 26. 0000 27.0000
28. 0000 29. 0000 30. 0000 31. 0000
32. 0000 33. 0000 34. 0000 35. 0000
36. 0000 37. 0000 38. 0000 39. 0000

IDL Reference Guide BLAS_AXPY

180 Chapter 3: Procedures and Functions

Create arandom update:
B = RANDOMJ seed, 4, 5, 2)
Print B
PRINT, B
IDL prints:
0.172861 0. 680409 0.917078 0.917510
0. 766779 0. 648501 0.334211 0. 505953
0. 652182 0.158174 0.912751 0. 257593
0. 810990 0. 267308 0.188872 0.237323
0. 312265 0. 551604 0.944883 0. 673464
0. 613302 0. 0874299 0. 782052 0. 374534
0. 0799968 0. 581460 0. 433864 0. 459824
0. 634644 0. 182057 0.832474 0.235194
0. 432587 0. 453664 0.738821 0.355747
0.933211 0. 388659 0. 269595 0. 796325
Add amultipleof Bto A (i.e.,, A=A + 45*B):
BLAS _AXPY, A 4.5, B
Print A:
PRI NT, A
IDL prints:
0.777872 4.06184 6. 12685 7.12880
7.45051 7.91825 7.50395 9.27679
10. 9348 9.71178 14. 1074 12. 1592
15. 6495 14. 2029 14. 8499 16. 0680
17. 4052 19. 4822 22. 2520 22.0306
22. 7599 21.3934 25. 5192 24. 6854
24. 3600 27.6166 27.9524 29. 0692
30. 8559 29. 8193 33. 7461 32.0584
33. 9466 35. 0415 37.3247 36. 6009
40. 1994 38. 7490 39. 2132 42.5835

Add a constant to a subvector of A (i.e. A[*, 3, 1] = A[*, 3, 1] + 4.3):
BLAS AXPY, A, 1., REPLICATE(4.3, 4), 1, [0, 3, 1]
Print A:
PRINT, A
IDL prints:

BLAS_AXPY IDL Reference Guide

Chapter 3: Procedures and Functions

0.777872 4.06184
7.45051 7.91825
10. 9348 9.71178
15. 6495 14. 2029
17. 4052 19. 4822
22.7599 21. 3934
24. 3600 27.6166
30. 8559 29. 8193
38. 2466 39. 3415
40. 1994 38. 7490

Create a vector update and print:
C = FI NDGEN(5)

6. 12685
7.50395

14.
14.
22.

25.
27.
33.
41.
39.

1074
8499
2520

5192
9524
7461
6247
2132

2. 00000
Add C to agroup of subvectorsof A (i.e. FORi =0, 1DOA[L,*,i] =A[1,*,i] + C) and

3, LI NDGEN(2)

6. 12685
7.50395

14.
14.
22.

25.
27.
33.
41.

PRI NT, C
IDL prints:
0. 000000 1. 00000
print:
BLAS AXPY, A 1., C, 2, [1, 0, 0],
PRI NT, A
IDL prints:
0.777872 4.06184
7. 45051 8.91825
10. 9348 11.7118
15. 6495 17.2029
17. 4052 23. 4822
22. 7599 21.3934
24. 3600 28. 6166
30. 8559 31. 8193
38. 2466 42.3415
40. 1994 42.7490

Version History

39.

1074
8499
2520

5192
9524
7461
6247
2132

7.12880
9. 27679

12.
16.
22.

24.
29.
32.
40.
. 5835

42

1592
0680
0306

6854
0692
0584
9009

3. 00000

7.12880
9. 27679

12.
16.
22.

24.
29.
32.
40.
42.

1592
0680
0306

6854
0692
0584
9009
5835

181

4. 00000

51 I ntroduced

See Also

REPLICATE_INPLACE

IDL Reference Guide

BLAS_AXPY

182

Chapter 3: Procedures and Functions

BLK_CON

The BLK_CON function computes a “fast convolution” of adigital signal and an
impul se-response sequence. It returns the filtered signal.

Thisroutineiswrittenin the IDL language. Its source code can be found in the file
bl k_con. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = BLK_CON(Filter, Signal [, B_LENGTH=scalar] [, /DOUBLE])

Return Value

This function returns a vector with the same length as Sgnal. If either of the input
arguments are double-precision or the DOUBLE keyword is set, the result is double-
precision, otherwise the result is single-precision.

Arguments

Filter

A P-element floating-point vector containing the impul se-response sequence of the
digital filter.

Signal
An n-element floating-point vector containing the discrete signal samples.

Keywords

B_LENGTH

A scalar specifying the block length of the subdivided signal segments. If this
parameter is not specified, a near-optimal value is chosen by the algorithm based
upon the length P of the impulse-response sequence. If P isavalue lessthan 11 or
greater than 377, then B_LENGTH must be specified.

B_LENGTH must be greater than the filter length, P, and |ess than the number of
signal samples.

BLK_CON IDL Reference Guide

Chapter 3: Procedures and Functions 183

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

Examples

; Create a filter of length P = 32:
filter = REPLI CATE(1. 0, 32) ;Set all points to 1.0
filter(2*I NDGEN(16)) = 0.5 ; Set even points to 0.5

; Create a sanpled signal with random noi se:
signal = SI N((FI NDGEN(1000)/35.0)"2.5)

noi se = (RANDOMJ(SEED, 1000) - . 5)/ 2.

signal = signal + noise

; Convolve the filter and signal using block convol ution:
result = BLK_CON(filter, signal)

Version History

Pre4.0 Introduced

See Also

CONVOL

IDL Reference Guide BLK_CON

184 Chapter 3: Procedures and Functions

BOX_CURSOR

The BOX_CURSOR procedure emul ates the operation of avariable-sized box cursor
(also known as a“marquee” selector).

Warning
BOX_CURSOR does not function properly when used within a draw widget. See
the BUTTON_EVENTS and MOTION_EVENTS keywords in WIDGET_DRAW.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
box_cursor. prointhel i b subdirectory of the IDL distribution.

Using BOX_ CURSOR

Once the box cursor has been realized, hold down the left mouse button to move the
box by dragging. Hold down the middle mouse button to resize the box by dragging.
(The corner nearest the initial mouse position is moved.) Press the right mouse button
to exit the procedure and return the current box parameters.

On machines with only two mouse buttons, hold down the left and right buttons
simultaneoudly to resize the box.

Syntax
BOX_CURSOR, [X0, YO, NX, NY [, /INIT] [, /FIXED_SIZE]] [, IMESSAGE]
Arguments
X0, YO

Named variables that will contain the coordinates of the lower |eft corner of the box
cursor.

NX, NY

Named variables that will contain the width and height of the cursor, in pixels.

BOX_CURSOR IDL Reference Guide

Chapter 3: Procedures and Functions 185

Keywords

INIT

If this keyword is set, the arguments X0, YO, NX, and NY contain the initial position
and size of the box.

FIXED_SIZE

If this keyword is set, NX and NY contain theinitial size of the box. This size may not
be changed by the user.

MESSAGE
If this keyword is set, IDL prints a message describing operation of the cursor.

Version History

Pre4.0 Introduced

See Also

Routines: CURSOR

Keywordsto “IDL Direct Graphics Devices’ on page 4909:
CURSOR_CROSSHAIR, CURSOR_IMAGE, CURSOR_STANDARD,
CURSOR_XY

IDL Reference Guide BOX_CURSOR

186

BREAK

Chapter 3: Procedures and Functions

The BREAK statement provides a convenient way to immediately exit from aloop

(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to
GOTO statements.

Note

BREAK isan IDL statement. For information on using statements, see Chapter 7,
“Program Control” in the Building IDL Applications manual.

Syntax
BREAK

Examples

This example exits the enclosing WHILE loop when the value of i hits 5.
l =0
VWHI LE (1) DO BEG N
i =i +1
IF (i eq 5) THEN BREAK
ENDWHI LE

Version History

54 Introduced

BREAK IDL Reference Guide

Chapter 3: Procedures and Functions 187

BREAKPOINT

The BREAKPOINT procedure alows you to insert and remove breakpointsin
programs for debugging. A breakpoint causes program execution to stop after the
designated statement is executed. Breakpoints are specified using the sourcefile
name and line number. For multiple-line statements (statements containing “$”, the
continuation character), specify the line number of the last line of the statement.

You can insert breakpointsin programs without editing the source file. Enter the
following:

HELP, /BREAKPO NT

to display the breakpoint table which gives the index, module and source file
locations of each breakpoint.

Syntax

BREAKPOINT [, File], Index [, AFTER=integer] [, /CLEAR]
[, CONDITION="expression’] [, /DISABLE] [, /ENABLE]
[, /ON_RECOMPILE] [, /ONCE] [, /SET]

Arguments
File

An optional string argument that contains the name of the sourcefile. Note that if File
is not in the current directory, the full path name must be specified even if Fileisin
one of the directories specified by 'PATH.

Index

The line number at which to clear or set a breakpaint.
Keywords
AFTER

Set this keyword equal to an integer n. Execution will stop only after the nth time the
breakpoint is hit. For example:

BREAKPOI NT, /SET, 'test.pro', 8, AFTER=3

IDL Reference Guide BREAKPOINT

188 Chapter 3: Procedures and Functions

This sets a breakpoint at the eighth line of thefilet est . pr o, but only stops
execution after the breakpoint has been encountered three times.

CLEAR

Set this keyword to remove a breakpoint. The breakpoint to be removed is specified
either by index, or by the source file and line number. Use command HELP,
/ BREAKPQO NT to display the indices of existing breakpoints. For example:

Cl ear breakpoint with an index of 3:
BREAKPO NT, /CLEAR, 3

Cl ear the breakpoint corresponding to the statement in the file

; test.pro, |line nunber 8:
BREAKPO NT, /CLEAR, 'test.pro',8
CONDITION

Set this keyword to a string containing an IDL expression. When a breakpoint is
encountered, the expression is evaluated. If the expression istrue (if it returns anon-
zero value), program execution isinterrupted. The expression is evaluated in the
context of the program containing the breakpoint. For example:

BREAKPAO NT, 'nyfile.pro', 6, CONDITION="i gt 2
If i isgreater than 2 at line 6 of nyfi | e. pr o, the program is interrupted.

DISABLE

Set this keyword to disable the specified breakpoint, if it exists. The breakpoint can
be specified using the breakpoint index or file and line number:

Di sabl e breakpoint with an index of 3:
BREAKPO NT, /DI SABLE, 3

; Disabl e the breakpoint corresponding to the statement in the file

; test.pro, |line nunber 8:
BREAKPO NT, /DI SABLE, 'test.pro',8
ENABLE

Set this keyword to enable the specified breakpoint if it exists. The breakpoint can be
specified using the breakpoint index or file and line number:

Enabl e breakpoint with an index of 3:
BREAKPO NT, /ENABLE, 3

Enabl e the breakpoint at line 8 of the file test.pro
BREAKPO NT, /ENABLE, 'test.pro',8

BREAKPOINT IDL Reference Guide

Chapter 3: Procedures and Functions 189

ON_RECOMPILE

Set this keyword to specify that the breakpoint will not take effect until the next time
thefile containing it is compiled.

ONCE
Set this keyword to make the breakpoint temporary. If ONCE is set, the breakpoint is
cleared as soon asiit is hit. For example:
BREAKPOI NT, /SET, 'file.pro', 12, AFTER=3, /ONCE

sets abreakpoint at line 12 of fi | e. pr o. Execution stopswhen line 12 is
encountered the third time, and the breakpoint is automatically cleared.

SET

Set this keyword to set a breakpoint at the designated sourcefile line. If this keyword
is set, the first input parameter, File must be a string expression that contains the
name of the source file. The second input parameter must be an integer that
represents the source line number.

For example, to set abreakpoint at line 23 in the sourcefile xyz. pr o, enter:
BREAKPO NT, /SET, 'xyz.pro', 23

Version History

Pre4.0 I ntroduced

IDL Reference Guide BREAKPOINT

190

BROYDEN

Chapter 3: Procedures and Functions

The BROY DEN function solves a system of n nonlinear equations (wheren>2) inn
dimensions using a globally-convergent Broyden’s method.

BROYDEN is based on the routine br oydn described in section 9.7 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = BROY DEN(X, Vecfunc [, CHECK=variable] [, /DOUBLE] [, EPS=value]

[, ITMAX=value] [, STEPMAX=value] [, TOLF=value] [, TOLMIN=valug]
[, TOLX=value])

Return Value
This function returns an n-element vector containing the solution.
Arguments
X

An n-element vector (where n > 2) containing an initial guess at the solution of the
system.

Note
If BROYDEN is complex then only the real part is used for the computation.

Vecfunc

A scalar string specifying the name of a user-supplied IDL function that defines the

system of non-linear equations. This function must accept a vector argument X and
return a vector result.

BROYDEN IDL Reference Guide

Chapter 3: Procedures and Functions 191
For example, suppose we wish to solve the following system:

3x—cos(yz)—-1/2
x°—81(y +0.1)2+ sin(z) + 1.06|= ¢

e +207 + 1E=2

To represent this system, we define an IDL function named BROY FUNC:

FUNCTI ON br oyfunc, X
RETURN, [3.0 * X[0] - COS(X[1]*X2]) - 0.5, %
X[0]"2 - 81.0*(X[1] + 0.1)"2 + SIN(X[2]) + 1.06,%
EXP(-X[0]*X[1]) + 20.0 * X[2] + (10.0*!'Pl - 3.0)/3.0]
END

Keywords
CHECK

BROYDEN calls aninternal function named f i n() to determine whether the
routine has converged to alocal rather than a global minimum (see Numerical
Recipes, section 9.7). Use the CHECK keyword to specify a named variable which
will be set to 1 if the routine has converged to alocal minimum or to O if not. If the
routine does converge to alocal minimum, try restarting from adifferent initial guess
to obtain the global minimum.

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

Set this keyword to a number close to machine accuracy, used to remove noise from
each iteration. The default is 10”7 for single precision, and 101# for double precision.

ITMAX

Use this keyword to specify the maximum allowed number of iterations. The default
is 200.

IDL Reference Guide BROYDEN

192 Chapter 3: Procedures and Functions

STEPMAX

Use this keyword to specify the scaled maximum step length allowed in line searches.
The default value is 100.0.

TOLF
Set the convergence criterion on the function values. The default valueis 1.0 x 1074,
TOLMIN

Set the criterion for deciding whether spurious convergence to a minimum of the
function f mi n() hasoccurred. The default valueis 1.0 x 10°6.

TOLX

Set the convergence criterion on X. The default valueis 1.0 x 107
Examples

We can use BROY DEN to solve the non-linear system of equations defined by the
BROY FUNC function above:

;Provide an initial guess as the algorithnmis starting point:
X=1[-1.0, 1.0, 2.0]

; Comput e the sol ution:
result = BROYDEN(X, ' BROYFUNC)

;Print the result:
PRI NT, result

IDL prints:
0.500000 -1.10731e-07 -0.523599
The exact solution (to eight-decimal accuracy) is[0.5, 0.0, -0.52359877].

Version History

Pre4.0 Introduced

See Also

FX_ROQT, FZ_ROOTS, NEWTON

BROYDEN IDL Reference Guide

Chapter 3: Procedures and Functions 193

BUTTERWORTH

The BUTTERWORTH function returns an array that contains the absolute value of
the low-pass Butterworth kernel.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
butterworth. prointheli b subdirectory of the IDL distribution.

The form of thefilter is given by the following equation:
1

Q2N
1+(5)
where Q is the frequency, Q). is the cutoff frequency, and N is the order.
Syntax

Result = BUTTERWORTH(X[, Y[, Z]] [, CUTOFF=value] [, ORDER=value]
[, /ORIGIN] [, XDIM=value] [, YDIM=value] [, ZDIM=value])

Return Value

Theresult iseither a1D, 2D, or 3D array with the dimensions of the result defined by
theinputs X, Y, and Z.

Arguments

X

Either a scalar value containing the number of elementsin the x direction or a vector
of up to three elements giving the number of elementsin the x, y, and z directions,
respectively.

The number of elementsin they direction. This argument isignored if X contains
more than one element.

The number of elementsin the zdirection. Thisargument isignored if X contains
more than one element.

IDL Reference Guide BUTTERWORTH

194 Chapter 3: Procedures and Functions

Keywords

CUTOFF

The cutoff frequency. The default valueis 9.
ORDER

The order of thefilter. The default valueis 1.
ORIGIN

If set, the return array is centered at the corners of the array.
XDIM

The x spacing of the columns.
YDIM

They spacing of the rows.
ZDIM

The z spacing of the planes.

Example

; if "im is the variable containing an inage to be filtered
filter = BUTTERWORTH(SIZE(im /DI MENSI ONS))
filtered_image = FFT(FFT(im -1) * filter, 1)

Version History

6.3 Introduced

BUTTERWORTH IDL Reference Guide

Chapter 3: Procedures and Functions 195

BYTARR

The BY TARR function creates a byte vector or array.

Syntax

Result = BY TARR(D[, ..., Dg] [, INOZERQ])

Return Value

This function returns a byte vector or array.
Arguments
D

Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, BY TARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed (array elements contain random val ues)
and BY TARR executes faster.

Examples

To create B asa 3 by 3 by 5 byte array where each element is set to zero, enter:
B = BYTARR(3, 3, 5)

Version History

Original Introduced

IDL Reference Guide BYTARR

196 Chapter 3: Procedures and Functions

See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULONG64ARR, ULONARR

BYTARR IDL Reference Guide

Chapter 3: Procedures and Functions 197

BYTE

The BYTE function returns aresult equal to Expression converted to byte type. If
Expression is a string, each string is converted to a byte vector of the same length as
the string. Each element of the vector is the character code of the corresponding
character in the string. The BY TE function can also be used to extract data from
Expression and placeit in abyte scalar or array without modification, if more than
one parameter is present. See “ Type Conversion Functions’” on page 279 for details.

Syntax
Result = BY TE(Expression[, Offset [, D4, ..., Dg]]])
Return Value

Returns a byte value or array of the same dimensions as the Expression. If Expression
isacomplex number, BY TE returns the real part.

Arguments

Expression

The expression to be converted to type byte.
Offset

The byte offset from the beginning of Expression. Specifying this argument allows
fields of data extracted from Expression to be treated as byte data without conversion.

Di
When extracting fields of data, the D; arguments specify the dimensions of the resullt.
If no dimension arguments are given, the result istaken to be scalar.

The D; arguments can be either an array or a series of scalar expressions. If asingle
argument is specified, it can be either a scalar expression or an array of up to eight
elements. If multiple arguments are specified, they must all be scalar expressions. Up
to eight dimensions can be specified.

IDL Reference Guide BYTE

198 Chapter 3: Procedures and Functions

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Example

If the variable A contains the floating-point value 10.0, it can be converted to byte
type and saved in the variable B by entering:

B = BYTE(A)

Version History

Original Introduced

See Also

COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64

BYTE IDL Reference Guide

Chapter 3: Procedures and Functions 199

BYTEORDER

The BY TEORDER procedure converts integers between host and network byte
ordering or floating-point values between the native format and XDR (IEEE) format.
This routine can aso be used to swap the order of bytes within both short and long
integers. If the type of byte swapping is not specified via one of the keywords below,
bytes within short integers are swapped (even and odd bytes are interchanged).

The size of the parameter, in bytes, must be evenly divisible by two for short integer
swaps, and by four for long integer swaps. BY TEORDER operates on both scalars
and arrays. The parameter must be a variable, not an expression or constant, and may
not contain strings. The contents of Variable are overwritten by the result.

Network byte ordering is “big endian”. That is, multiple byte integers are stored in
memory beginning with the most significant byte.

Syntax

BYTEORDER, Variabley, ..., Variable, [, /IDTOVAX] [, /DTOXDR] [, /FTOVAX]
[, IFTOXDR] [, /HTONL] [, /HTONS] [, /L64SWAP] [, /LSWAP] [, INTOHL]
[, INTOHS] [, /[SSWAP] [, /[SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN] [, /VAXTOD] [, /VAXTOF] [, /XDRTOD]
[, /XDRTOF]

Arguments

Variable,

A named variable (not an expression or constant) that contains the datato be
converted. The contents of Variable are overwritten by the new values.

Keywords
DTOVAX

Set this keyword to convert native (IEEE) double-precision floating-point format to
VAX D float format. See “Note on Accessing Datain VAX Floating Point Format”
on page 202.

IDL Reference Guide BYTEORDER

200

Chapter 3: Procedures and Functions

DTOXDR

Set this keyword to convert native double-precision floating-point format to XDR
(IEEE) format.

FTOVAX

Set this keyword to convert native (IEEE) single-precision floating-point format to
VAX Ffloat format. See “Note on Accessing Datain VAX Floating Point Format” on
page 202.

FTOXDR

Set this keyword to convert native single-precision floating-point format to XDR
(IEEE) format.

HTONL

Set this keyword to perform host to network conversion, longwords.
HTONS

Set this keyword to perform host to network conversion, short integers.
L64SWAP

Set this keyword to perform a 64-bit swap (8 bytes). Swap the order of the bytes
within each 64-bit word. For example, the eight bytes within a 64-bit word are
Changed from (Bo, Bl’ Bz, B3 B4, Bs, B6, B7), to (B7, BG’ Bs, B4’ B3, Bz, Bl’ Bo)

LSWAP

Set this keyword to perform a 32-bit longword swap. Swap the order of the bytes
within each longword. For example, the four bytes within alongword are changed
from (Bo, Bl’ Bz, B3), to (BS’ Bz, Bl’ Bo)

NTOHL
Set this keyword to perform network to host conversion, longwords.

NTOHS

Set this keyword to perform network to host conversion, short integers.

BYTEORDER IDL Reference Guide

Chapter 3: Procedures and Functions 201

SSWAP

Set this keyword to perform a short word swap. Swap the bytes within short integers.
The even and odd numbered bytes are interchanged. This is the default action, if no
other keyword is set.

SWAP_IF_BIG_ENDIAN

If this keyword is set, the BY TEORDER request will only be performed if the
platform running IDL uses “big endian” byte ordering. On little endian machines, the
BY TEORDER request quietly returns without doing anything. Note that this
keyword does not refer to the byte ordering of the input data, but to the computer
hardware.

SWAP_IF_LITTLE_ENDIAN

If this keyword is set, the BY TEORDER request will only be performed if the
platform running IDL uses “little endian” byte ordering. On big endian machines, the
BYTEORDER request quietly returns without doing anything. Note that this
keyword does not refer to the byte ordering of the input data, but to the computer
hardware.

VAXTOD

Set this keyword to convert VAX D float format to native (IEEE) double-precision
floating-point format. See “Note on Accessing Datain VAX Floating Point Format”
on page 202.

VAXTOF

Set this keyword to convert VAX F float format to native (IEEE) single-precision
floating-point format. See “Note on Accessing Datain VAX Floating Point Format”
on page 202.

XDRTOD

Set this keyword to convert XDR (IEEE) format to native double-precision floating-
point.

XDRTOF

Set this keyword to convert XDR (IEEE) format to native single-precision floating-
point.

IDL Reference Guide BYTEORDER

202 Chapter 3: Procedures and Functions

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for agiven computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Note on Accessing Data in VAX Floating Point
Format

When converting between VAX and | EEE formats, you should be aware of the
following basic numerical issuesin order to get the best results. Translation of
floating-point values from IDL’s native |EEE format to the VAX format and back
(that is, VAX to IEEE to VAX) isnot acompl etely reversible operation, and should be
avoided when possible. There are many cases where the recovered values will differ
from the original values, including:

e TheVAX floating-point format lacks support for the | EEE special values (NaN
and Infinity). Hence, their special meaning islost when they are converted to
VAX format and cannot be recovered.

e ThelEEE and VAX floating formats haveintrinsic differencesin precision and
range, which can cause information to be lost in both directions. When
converting from one format to another, IDL rounds the value to the nearest
representabl e value in the target format.

As apractical matter, an initial conversion of existing VAX format datato IEEE
cannot be avoided if the datais to be used on modern machines. However, each
format conversion can add a small amount of error to the resulting values, soitis
important to minimize the number of such conversions. RSI recommends using
IEEE/VAX conversions only to read existing VAX format data, and strongly
recommends that all new files be created using the native |EEE format. This
introduces only a single unavoidable conversion, and minimizes the resulting
conversion error.

BYTEORDER IDL Reference Guide

Chapter 3: Procedures and Functions 203

Version History

Pre4.0 Introduced
Pre6.1 Deprecated DTOGFLOAT and GFLOATTOD keywords

For more information on deprecated features, see Appendix J, “ Obsolete Features’.
See Also

SWAP_ENDIAN

IDL Reference Guide BYTEORDER

204 Chapter 3: Procedures and Functions

BYTSCL

The BYTSCL function scalesal values of Array that liein the range (Min < x < Max)
into the range (0 < x < Top). For floating-point input, each value is scaled using the
formula (Top + 0.9999)* (x - Min)/(Max - Min). For integer input, each value is
scaled using the formula ((Top + 1)* (x - Min) - 1)/(Max - Min).

Syntax

Result = BYTSCL(Array [, MAX=value] [, MIN=value] [, /NAN] [, TOP=value])

Return Value

The returned result has the same structure as the original parameter and is of byte
type.

Arguments

Array

The array to be scaled and converted to bytes.
Keywords
MAX

Set this keyword to the maximum value of Array to be considered. If MAX is not
provided, Array is searched for its maximum value. All values greater or equal to
MAX are set equal to TOP in the result.

Note
The datatype of the value specified for MAX should match the data type of the
input array. Since MAX is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

MIN
Set this keyword to the minimum value of Array to be considered. If MIN is not

provided, Array is searched for its minimum value. All values less than or equal to
MIN are set equal to O in the result.

BYTSCL IDL Reference Guide

Chapter 3: Procedures and Functions 205

Note
The datatype of the value specified for MIN should match the datatype of theinput
array. Since MIN is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

NAN

Set this keyword to cause the routine to check for occurrences of the |EEE floating-
point values NaN or Infinity in theinput data. Elements with the value NaN or Infinity
are treated as missing data. (See “ Special Floating-Point Values® in Chapter 8 of the
Building IDL Applications manual for more information on | EEE floating-point
values.)

TOP

Set this keyword to the maximum value of the scaled result. If TOP is not specified,
255 is used. Note that the minimum value of the scaled result is aways 0.

Thread Pool Keywords

Thisroutine is written to make use of IDL’sthread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Note
Also see “Byte-Scaling” in Chapter 8 of the Image Processing in IDL manual.

BYTSCL is often used to scale images into the appropriate range for 8-bit displays.
As an example, enter the following commands:

; Create a sinple imge array and displ ay:
I M = DI ST(200)
TV, IM

; Scale the image into the full range of bytes (0 to 255) and

; re-display it:
IM= BYTSCL(IM

IDL Reference Guide BYTSCL

206

Di spl ay the new i mage:

TV, IM

Version History

Chapter 3: Procedures and Functions

Origind Introduced

See Also

BYTE, TVSCL

BYTSCL

IDL Reference Guide

Chapter 3: Procedures and Functions 207

C_CORRELATE

The C_CORRELATE function computes the cross correlation Pxy(L) or cross
covariance Rxy(L) of two sample populations X and Y as afunction of thelag L

N—|L| -1
> K =00k =Y)
k=0 ForL <0
N-1 N-1
S =%2 || Y (-9
k=0 k=0
Py = N-L-1
Z X =X) Y+ =)
k=0 ForL >0
N-1 N-1
Z (Xk—)_()z Z (yk—y)z
k=0 k=0
N-|Ll-1
1 _ _
N X+ —X)(Y—y) ForL <0
k=0
Ry (L) =
N-L-1
1 _ _
N X =X) YL —Y) ForL >0
k=0

where x and y are the means of the sample populations x = (Xg, X1, Xo, ... , X\.1) and y
= (Yo, Y1, Y21 -+ » YN-1)» FESPECtively.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
c_correl ate. prointheli b subdirectory of the IDL distribution.

IDL Reference Guide C_CORRELATE

208 Chapter 3: Procedures and Functions

Syntax
Result = C_CORRELATE(X, Y, Lag [, /COVARIANCE] [, /DOUBLE])
Return Value

Returns the cross correlation Pxy(L) or cross covariance Rxy(L) of two sample
populations X and Y as afunction of thelag L.

Arguments

X

An n-element integer, single-, or double-precision floating-point vector.
Y

An n-element integer, single-, or double-precision floating-point vector.
Lag

A scalar or n-element integer vector in the interval [-(n-2), (n-2)], specifying the
signed distances between indexed elements of X.

Keywords
COVARIANCE

Set this keyword to compute the sample cross covariance rather than the sample cross
correlation.

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define two n-el enent sanpl e popul ati ons:
X =1[3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]

Y [2.31, 2.76, 3.02, 3.13, 3.72, 3.88, 3.97, 4.39, 4.34, 3.95]
; Conpute the cross correlation of X and Y for LAG = -5, 0, 1, 5,
6, 7

lag = [-5, 0, 1, 5, 6, 7]

C_CORRELATE IDL Reference Guide

Chapter 3: Procedures and Functions 209

result = C CORRELATE(X, Y, |ag)
PRI NT, result
IDL prints:

-0.428246 0.914755 0.674547 -0.405140 -0.403100 -0.339685

Version History

4.0 Introduced

See Also

A CORRELATE, CORRELATE, M_CORRELATE, P CORRELATE,
R_CORRELATE, “Correlation Analysis’ in Chapter 12 of the Using IDL manual

IDL Reference Guide C_CORRELATE

210 Chapter 3: Procedures and Functions

CALDAT

The CALDAT procedure computes the month, day, year, hour, minute, or second
corresponding to a given Julian date. The inverse of this procedure is JULDAY.

Note
The Julian calendar, established by Julius Caesar in the year 45 BCE, was corrected
by Pope Gregory XIl1 in 1582, excising ten days from the calendar. The CALDAT
procedure reflects the adjustment for dates after October 4, 1582. See the example
below for an illustration.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
cal dat . prointheli b subdirectory of the IDL distribution.

Syntax
CALDAT, Julian, Month [, Day [, Year [, Hour [, Minute [, Second]]]]]
Arguments

Julian

A numeric value or array that specifies the Julian Day Number (which begins at
noon) to be converted to a calendar date.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Note
Julian Day Numbers should be maintained as double-precision floating-point data
when the numbers are used to determine hours, minutes, and seconds.

Month

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the desired month (1 = January, ..., 12 = December).

CALDAT IDL Reference Guide

Chapter 3: Procedures and Functions 211

Day

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the day of the month (1-31).

Year

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the desired year (e.g., 1994).

Hour

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the hour of the day (0-23).

Minute

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the minute of the hour (0-59).

Second

A named variable that, on output, contains a double-precision floating-point value or
adouble-precision floating-point array representing the number of the second of the
minute (0-59).

Keywords
None.
Examples

In 1582, Pope Gregory Xl adjusted the Julian calendar to correct for its inaccuracy
of dightly more than 11 minutes per year. As aresult, the day following October 4,
1582 was October 15, 1582. CALDAT follows this convention, as illustrated by the
following commands:

CALDAT, 2299160, Monthl, Dayl, Yearl
CALDAT, 2299161, Month2, Day2, Year2
PRI NT, Monthl, Dayl, Yearl
PRI NT, Month2, Day2, Year2

IDL Reference Guide CALDAT

212 Chapter 3: Procedures and Functions

IDL prints:

10 4 1582
10 15 1582

Warning
You should be aware of this discrepancy between the original and revised Julian
calendar reckonings if you calculate dates before October 15, 1582.

Be sure to distinguish between Month and Minute when assigning variable names.
For example, the following code would cause the Month value to be the same as the
Minute value:

; Find date corresponding to Julian day 2529161. 36:
CALDAT, 2529161.36, M D, Y, H M S
PRINT, M D, Y, H M S

IDL prints:
0 4 2212 18 0 0. 00000000

Moreover, Julian Day Numbers should be maintained as double-precision floating-
point data when the numbers are used to determine hours, minutes, and seconds.

So, instead of the previous call to CALDAT, use something like:

CALDAT, 2529161. 36D, Month, Day, Year, Hour, Mnute, Second
PRI NT, Month, Day, Year, Hour, Mnute, Second

IDL prints:
7 4 2212 20 38 23. 999989
You can also use arrays for the Julian argument:

CALDAT, DI NDGEN(4) + 2449587.0D, m d, y
PRINT, m d, y

IDL prints:
8 8 8 8
22 23 24 25
1994 1994 1994 1994

Version History

Pre4.0 Introduced

CALDAT IDL Reference Guide

Chapter 3: Procedures and Functions 213

See Also

BIN_DATE, JULDAY, SYSTIME

IDL Reference Guide CALDAT

214 Chapter 3: Procedures and Functions

CALENDAR

The CALENDAR procedure displays a calendar for a month or an entire year on the
current plotting device. ThisIDL routine imitates the UNIX cal command.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cal endar. prointhel i b subdirectory of the IDL distribution.

Syntax
CALENDAR [[, Month] , Year]
Arguments

Month

The number of the month for which a calendar isdesired (1 is January, 2 is February,
..., 12 is December). If called without arguments, CALENDAR draws a calendar for
the current month.

Year

The number of the year for which a calendar should be drawn. If YEAR is provided
without MONTH, a calendar for the entire year isdrawn. If called without arguments,
CALENDAR draws a calendar for the current month.

Example

; Display a calendar for the year 2038.
CALENDAR, 2038

; Display the calendar for Cctober, 1582.
CALENDAR, 10, 1582

Version History

Original Introduced

See Also

SYSTIME

CALENDAR IDL Reference Guide

Chapter 3: Procedures and Functions 215

CALL_EXTERNAL

The CALL_EXTERNAL function calls afunction in an external sharable object and
returns a scalar value. Parameters can be passed by reference (the default) or by
value. See Chapter 3, “Using CALL_EXTERNAL” in the External Devel opment
Guide manual for examples.

CALL_EXTERNAL issupported under all operating systems supported by IDL,
although there are system specific details of which you must be aware. This function
requires no interface routines and is much simpler and easier to use than the
LINKIMAGE procedure. However, CALL_EXTERNAL performs no checking of
the type and number of parameters. Programming errors are likely to cause IDL to
crash or to corrupt your data.

Warning
Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using theinternal IDL_Message() function. Performing
input or output from external code, especialy to the user console or tty (e.g. using
printf () orequivaent functionality in other languages to send text to stdout) may
create errors or generate unexpected results.

CALL_EXTERNAL supportsthe IDL Portable Convention, a portable calling
convention that works on al platforms. This convention passes two arguments to the
called routine, an argument count (ar gc) and an array of arguments (ar gv).

CALL_EXTERNAL aso offers afeature called Auto Glue that can greatly simplify
use of the CALL_EXTERNAL portable convention if you have the appropriate C
compiler installed on your system. Auto glue automatically writes the glue function
required to convert the (argc, argv) arguments to the actual function call, and then
compiles and loads the glue function transparently. If you want IDL to simply write
the glue function for you, but not compileit, the WRITE WRAPPER keyword can be
used.

Theresult of the CALL_EXTERNAL function isascaar value returned by the
external function. By default, thisisascalar long (32-bit) integer. This default can be
changed by specifying one of the keywords described below that alter the result type.

Syntax
Result = CALL_EXTERNAL (Image, Entry [, Py, ..., Pn.1] [, /ALL_VALUE]

[,/B_VALUE|,/D_VALUE|,/F_VALUE|,/l_VALUE|,/L64 VALUE |
,/S VALUE |, /Ul_VALUE |, /UL_VALUE |, /UL64 VALUE] [, /CDECL]

IDL Reference Guide CALL_EXTERNAL

216 Chapter 3: Procedures and Functions
[, RETURN_TYPE=value] [, /[UNLOAD] [, VALUE=byte array]
[, WRITE_WRAPPER=wrapper_file])

Auto Glue Keywords: [, /AUTO_GLUE] [, CC=string]
[, COMPILE_DIRECTORY=string] [, EXTRA_CFLAGS=string]
[, EXTRA_LFLAGS=string] [, /IGNORE_EXISTING_GLUE] [, LD=string]
[, /NOCLEANUR] [, /[SHOW_ALL_OUTPUT] [, /VERBOSE]

Return Value
Thisfunction callsafunction in an external sharable object and returns a scalar value.

Arguments

Image

The name of the file, which must be a sharable library (UNIX), or DLL (Windows),
which contains the routine to be called.

Entry

A string containing the name of the symbol in the library which isthe entry point of
the routine to be called.

Po, ey PN-l

The parameters to be passed to the external routine. All array and structure arguments
are passed by reference (address). The default isto also pass scalars by reference, but
the ALL_VALUE or VALUE keywords can be used to pass them by value. Care must
be taken to ensure that the type, structure, and passing mechanism of the parameters
passed to the external routine match what it expects. There are some restrictions on
data types that can be passed by value, and the user needs to be aware of how IDL
passes strings. Both issues discussed in further detail below.

Keywords
ALL_VALUE

Set this keyword to indicate that all parameters are passed by value. There are some
restrictions on data types that should be considered when using this keyword, as
discussed below.

CALL_EXTERNAL IDL Reference Guide

Chapter 3: Procedures and Functions 217

B_VALUE

If set, this keyword indicates that the called function returns a byte value.
CDECL

The Microsoft Windows operating system has two distinct system defined standards
that govern how routines pass arguments: st dcal | , which is used by much of the
operating system as well as languages such as Visual Basic, and cdecl , whichis
used widely for programming in the C language. These standards differ in how and
when arguments are pushed and removed from the system stack. The standard used
by agiven function is determined when the function is compiled, and can usually be
controlled by the programmer. If you call afunction using the wrong standard (e.g.
calling ast dcal I function asif it were cdecl , or the reverse), you could get
incorrect results, corrupted memory, or you could crash IDL. Unfortunately, thereis
no way for IDL to know which convention a given function uses; this information
must be supplied by the user of CALL_EXTERNAL. If the CDECL keyword is
present, IDL will usethecdecl convention to call thefunction. Otherwise, st dcal |
is used.

D_VALUE

If set, this keyword indicates that the called function returns a double-precision
floating value.

F_VALUE

If set, this keyword indicates that the called function returns a single-precision
floating value.

| VALUE

If set, this keyword indicates that the called function returns an integer value.
L64 VALUE

If set, this keyword indicates that the called function returns a 64-hit integer value.
RETURN_TYPE

The type code to set the type of the result. See the description of the SIZE function
for alist of the IDL type codes.

IDL Reference Guide CALL_EXTERNAL

218

Chapter 3: Procedures and Functions

S_VALUE

If set, this keyword indicates that the called function returns a pointer to a
null-terminated string.

UI_VALUE

If set, this keyword indicates that the called function returns an unsigned integer
value.

UL_VALUE

If set, this keyword indicates that the called function returns an unsigned long integer
value.

UL64_VALUE

If set, this keyword indicates that the called function returns an unsigned 64-bit
integer value.

UNLOAD

Normally, IDL keeps Image loaded in memory after the call to CALL_EXTERNAL
completes. Thisis done for efficiency—Iloading a sharable object can be aslow
operation. Setting the UNLOAD keyword will cause IDL to unload Image after the
cal toitiscomplete. Thisis useful if you are debugging code in Image, asit allows
you to iterate on your code without having to exit IDL between tests. It can aso bea
good ideaif you do not intend to make any subsequent calls to routines within Image.

If IDL isunable to unload the sharable object, it will issue an error to that effect. In
addition to any operating system reported problem that might occur, IDL cannot
perform the UNLOAD operation if the sharable library has been used for any other
purposein addition to CALL_EXTERNAL (e.g. LINKIMAGE).

VALUE

A byte array, with as many elements as there are optional parameters, indicating the
method of parameter passing. Arrays are always passed by reference. If parameter P,
isascalar, it is passed by reference if VALUE][i] is O; and by valueif it is non-zero.
There are some restrictions on data types that should be considered when using this
keyword, as discussed below.

CALL_EXTERNAL IDL Reference Guide

Chapter 3: Procedures and Functions 219

WRITE_WRAPPER

If set, WRITE_WRAPPER supplies the name of afilefor CALL_EXTERNAL to
create containing the C function required to convert the (ar gc, ar gv) interface used
by the CALL_EXTERNAL portable calling convention to the interface of the target
function. If WRITE_WRAPPER is specified, CALL_EXTERNAL writesthe
specified file, but does not attempt to actually call the function specified by Entry.
Theresult from CALL_EXTERNAL isaninteger O in this case, and has no special
meaning. Use of WRITE_WRAPPER implies the PORTABLE keyword.

Note
Thisissimilar to Auto Glue only in that CALL_EXTERNAL writes afunction on

your behalf. Unlike Auto Glue, WRITE_WRAPPER does not attempt to compile
the resulting function or to use it. You might want to use WRITE_WRAPPER to
generate IDL interfacesfor an externa library in cases where you intend to combine
the interfaces with other code or otherwise modify it before using it with IDL.

Auto Glue Keywords

Auto Glue, discussed in the section “Auto Glue” on page 222, offers a simplified way
to usethe CALL_EXTERNAL portable calling convention. The following keywords
control its use. Many of these keywords correspond to the same keywords to the
MAKE_DLL procedure, and are covered in more detail in the documentation for that
routine.

AUTO_GLUE
Set this keyword to enable the CALL_EXTERNAL Auto Glue feature.
CcC

If present, atemplate string to be used in generating the C compiler command(s) to
compile the automatically generated glue function. For a more compl ete description
of this keyword, see MAKE_DLL.

COMPILE_DIRECTORY

Specifies the directory to use for creating the necessary intermediate files and the
final glue function sharable library. For amore complete description of this keyword,
see MAKE_DLL.

IDL Reference Guide CALL_EXTERNAL

220

Chapter 3: Procedures and Functions

EXTRA_CFLAGS

If present, a string supplying extra options to the command used to execute the C
compiler. For amore compl ete description of this keyword, see MAKE _DLL.

EXTRA_LFLAGS

If present, a string supplying extra options to the command used to execute the linker.
For a more compl ete description of this keyword, see MAKE_DLL.

IGNORE_EXISTING_GLUE

Normally, if Auto Glue finds a pre-existing glue function, it will use it without
attempting to build it again. Set IGNORE_EXISTING_GLUE to override this
caching behavior and force CALL_EXTERNAL to rebuild the glue function sharable
library.

LD

If present, atemplate string to be used in generating the linker command to build the
glue function sharable library. For a more complete description of this keyword, see
MAKE_DLL.

NOCLEANUP

If set, CALL_EXTERNAL will not remove intermediate files generated in order to
build the glue function sharable library after the library has been built. This keyword
can be used to preserve information for debugging in case of error, or for additional
information on how Auto Glue works. For a more complete description of this
keyword, see MAKE_DLL.

SHOW_ALL_OUTPUT

Auto Glue normally produces no output unless an error prevents successful building
of the glue function sharable library. Set SHOW_ALL_OUTPUT to see al output
produced by the process of building the library. For a more complete description of
this keyword, see MAKE_DLL.

VERBOSE

If set, VERBOSE causes CALL_EXTERNAL to issue informational messages as it
carries out the task of locating, building, and executing the glue function. For amore
complete description of this keyword, see MAKE_DLL.

CALL_EXTERNAL IDL Reference Guide

Chapter 3: Procedures and Functions 221

String Parameters

IDL represents strings internally as IDL_STRING descriptors, which are defined in
the C language as.

typedef struct {
unsi gned short slen
unsi gned short stype;
char *s;
} IDL_STRING
To pass astring by reference, IDL passes the address of its IDL_STRING descriptor.
To pass a string by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

» Cadlled code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

* Thesl en field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

e Thestype fiedisused internally by IDL to know keep track of how the
memory for the string was obtained, and should be ignored by
CALL_EXTERNAL users.

e s isthepointer to the actual C string represented by the descriptor. If the string
iSNULL, IDL representsit asaNULL (0O) pointer, not as apointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for aNULL pointer before dereferencing it.

These issues are examined in greater detail in the IDL External Development Guide.
Calling Convention

CALL_EXTERNAL usesthe IDL Portable convention for calling user-supplied
routines. The IDL Portable calling convention can be simplified by using the Auto
Glue extension, described below.

The portabl e interface convention passes all arguments as elements of an array of C
void pointers (void *). The C language prototype for a user function called this way
looks like one of the following:

RET_TYPE xxx(int argc, void *argv[])

Where RET_TY PE is one of the following: UCHAR, short, | DL_UI NT, | DL_LONG,
I DL_ULONG, | DL_LONG54, | DL_ULONG54, f | oat , doubl e, or char *. Thereturn

IDL Reference Guide CALL_EXTERNAL

222

Chapter 3: Procedures and Functions

type used must agree with the type assumed by CALL_EXTERNAL as specified via
the keywords described above.

Ar gc isthe number of arguments, and the vector ar gv contains the arguments
themselves, one argument per element. Arguments passed by reference map directly
tothese (voi d *) pointers, and can be cast to the proper type and then dereferenced
directly by the called function. Passing arguments by valueis allowed, but since the
valuesare passed in (voi d *) pointers, there are some limitations and restrictions on
what is possible:

e Typesthat are larger than a pointer cannot be passed by value, and
CALL_EXTERNAL will issue an error if thisis attempted. This limitation
applies only to the standard portable calling convention. Auto Glue does not
have this limitation, and is able to pass such variables by value.

* Integer values can be easily passed by value. IDL widens any of the integer
typesto the C int type and they are then converted to a (void *) pointer using a
C cast operation.

* Thereisno Clanguage-defined conversion between pointers and floating point
types, so IDL copies the datafor the value directly into the pointer element.
Although such values can be retrieved by the called routine with the correct C
casting operations, thisis inconvenient and error prone. It is best to pass non-
integer data by reference.

Auto Glue

Auto Glue is an extension to the IDL Portable Calling Convention that makes it
easier to use.

The portable calling convention requires your function to use the IDL defined (ar gc,
ar gv) interface for passing arguments. However, functions not explicitly written for
use with CALL_EXTERNAL may not have thisinterface. A common solution using
the portable convention isfor the IDL user to write a glue function that serves as an
interface between IDL and the called function. The entire purpose of this glue
function, which is usualy very simple, isto convert the IDL (argc, argv) method of
passing parameters to a form acceptable to the called function. Writing this wrapper
function is easy for programmers who understand the C language, the system C
compiler and linker, and how sharable libraries work on their target operating system.
However, it is also tedious and error prone, and can be difficult for users that do not
aready have these skills.

Auto Glue usesthe MAKE_DLL procedure to automate the process of using glue
codeto call functionsviathe CALL_EXTERNAL portable calling convention. Since

CALL_EXTERNAL IDL Reference Guide

Chapter 3: Procedures and Functions 223

it depends so closely on MAKE_DLL, an understanding of how MAKE_DLL works
is necessary to fully understand Auto Glue. Aswith MAKE_DLL, Auto Glue
requires that your system have a suitable C compiler installed. Please refer to the
documentation for MAKE _DLL.

Auto Glue maintains a cache of previously built glue functions, and will reuse them
on subsequent requests, even between IDL sessions. Glue function libraries can be
recognized by their name, which starts with the prefix i dl _ce, and ends with the
proper suffix for a sharable library on the target system (most UNIX: . so, AlX: . a,
HP-UX: . sl , Windows: . dI |). CALL_EXTERNAL finds a suitable glue function
by performing the following steps in order, stopping after the first one that works:

1. Look for ace_gl ue subdirectory within the IDL distribution bi n
subdirectory for the current platform. (For example, on a Windows system the
subdirectory could be located in <I DL_DEFAULT>\ bi n\ bi n. x86.) If this
directory exists, it looks there for a sharable library containing the appropriate
glue function.

Note
For customer security reasons, the ce_gl ue subdirectory does not exist in the IDL
distribution as shipped by RSI, and IDL does not use it to create glue functions.
However, if an individual site creates this directory and places glue library files
withinit, IDL will use them. Multiple IDL sessions on agiven system can all share
these same glue files, even when run by different users on a multi-user system. If
you keep your IDL distribution on a network based file server shared by multiple
clients, and if you provide a sufficient selection of gluefiles, it is possible that your
users will not require alocally installed C compiler to use Auto Glue.

If you do create the ce_gl ue subdirectory on a multi-user system, we
recommend that you make it along with all files contained within belong to the
owner of the IDL distribution, and apply file protections that prevent non-
privileged users from creating files in the directory or modifying them.

2. Look inthedirectory given by the COMPILE_DIRECTORY keyword, or if
COMPILE_DIRECTORY is not present, in the directory given by the
IMAKE_DLL.COMPILE_DIRECTORY system variable for the appropriate
glue function.

3. If thisstep isreached, there is no pre-existing glue function available.
CALL_EXTERNAL will create one in the same directory searched in the
previous step by generating a C language file containing the needed glue
function, and then compiling and linking it into a sharable library using the
functionality of the MAKE_DLL procedure.

IDL Reference Guide CALL_EXTERNAL

224

Chapter 3: Procedures and Functions

« IDL loadsthe sharable library containing the glue function found in the
previous step, as well as the library you specified with the Image argument.

e CALL_EXTERNAL cdlsthegluefunction, causing your function to be called
with the correct parameters.

Thefirst time CALL_EXTERNAL encounters the need for a glue function that does
not already exist, it will automatically build it, and then use it without any external
indication that this has happened. You may notice abrief hesitationin IDL's
execution as it waits for this process to occur. Once a glue function exists, IDL can
load it immediately on subsequent calls (even in unrelated later IDL sessions), and no
delay will occur.

Example: Using Auto Glue To Call System Library Routines

Under Sun Solaris, there is afunction in the system math library called hypot() that
computes the length of the hypotenuse of aright-angled triangle:

sqrt(x*x + y*y)
This function has the C prototype:
doubl e hypot (doubl e x, doubl e vy)
The following IDL function uses Auto Glue to call thisroutine:

FUNCTI ON HYPOT, X, Y
Use the 32-bit or the 64-bit math library?
LI BM=(! VERSI ON. MEMORY_BI TS EQ 64) $
? "lusr/libl/sparcv9/libmso’ : '/usr/lib/libmso’
RETURN, CALL_EXTERNAL(LIBM 'hypot’, double(x), double(y), $
/ ALL_VALUE, /D_VALUE, /AUTO _GLUE)
END

Important Changes Since IDL 5.0

The current version of CALL_EXTERNAL differsfrom IDL versions up to and
including IDL 5.0 in afew ways that are important to users moving code to the
current version:

e Under Windows, CALL_EXTERNAL would pass IDL strings by value no
matter how the ALL_VALUE or VALUE keywords were set. Thiswas
inconsistent with all the other platforms and created unnecessary confusion.
IDL now uses these keywords to decide how to pass strings on al platforms.
Windows users with existing code that expects strings to be passed by value
without having specified it via one of these keywords will need to adjust their
use of CALL_EXTERNAL or their code.

CALL_EXTERNAL IDL Reference Guide

Chapter 3: Procedures and Functions 225

e Older versions of IDL would quietly pass by value arguments that are larger
than a pointer without issuing an error when using the portable calling
convention. Although this might work on some hardware, it is error prone and
can cause IDL to crash. IDL now issues an error in this case. Programmers
with existing code moving to a current version of IDL should change their
code to pass such data by reference.

Examples

See Chapter 3, “Using CALL_EXTERNAL" in the External Development Guide
manual.

Version History

Pre4.0 Introduced
Pre6.1 Deprecated the DEFAULT, PORTABLE, and VAX_FLOAT
keywords

For information on deprecated features, see Appendix J, “ Obsolete Features’.

See Also

LINKIMAGE

IDL Reference Guide CALL_EXTERNAL

226 Chapter 3: Procedures and Functions

CALL_FUNCTION

CALL_FUNCTION function callsthe IDL function specified by the string Name,
passing any additional parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_FUNCTION is much
faster. Therefore, CALL_FUNCTION should be used in preference to EXECUTE

whenever possible.

Syntax

Result = CALL_FUNCTION(Name[, Py, ..., P;])

Return Value

The result of the called function (specified by the string Name) is passed back as the
result of this routine.

Arguments

Name

A string containing the name of the function to be called. This argument can be a
variable, which alows the called function to be determined at runtime.

Pi

The arguments to be passed to the function given by Name. These arguments are the
positional and keyword arguments documented for the called function, and are
passed to the called function exactly asif it had been called directly.

Keywords
None.

Examples

The following command indirectly callsthe IDL function SQRT (the sguare root
function) with an argument of 4 and stores the result in the variable R:

R = CALL_FUNCTI ON(' SQRT', 4)

CALL_FUNCTION IDL Reference Guide

Chapter 3: Procedures and Functions

Version History

227

Pre4.0

I ntroduced

See Also

CALL_PROCEDURE, CALL_METHOD, EXECUTE

IDL Reference Guide

CALL_FUNCTION

228 Chapter 3: Procedures and Functions

CALL_METHOD

The CALL_METHOD function or procedure calls the object method specified by
Name, passing any additional parameters as its arguments.

Note
CALL_METHOD can aso be used as a function or a procedure.

Although not as flexible as the EXECUTE function, CALL_METHOD is much
faster. Therefore, CALL_METHOD should be used in preference to EXECUTE
whenever possible.

Syntax

Result = CALL_METHOD(Name, ObjRef, [, Py, ..., P])
or
CALL_METHOD, Name, ObjRéf, [, Py, ..., P,]

Return Value
Returns the results generated by the named function method when applicable.
Arguments

Name

A string containing the name of the method to be called. This argument can be a
variable, which allows the called method to be determined at runtime.

ObjRef
A scalar object reference that will be passed to the method as the Self argument.
P;

The arguments to be passed to the method given by Name. These arguments are the
positional and keyword arguments documented for the called method, and are passed
to the called method exactly asif it had been called directly.

CALL_METHOD IDL Reference Guide

Chapter 3: Procedures and Functions

Keywords
None.

Version History

229

51 Introduced

See Also

CALL_FUNCTION, CALL_PROCEDURE, EXECUTE

IDL Reference Guide

CALL_METHOD

230 Chapter 3: Procedures and Functions

CALL_PROCEDURE

CALL_PROCEDURE calls the procedure specified by Name, passing any additional
parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_PROCEDURE is much
faster. Therefore, CALL_PROCEDURE should be used in preference to EXECUTE

whenever possible.

Syntax

CALL_PROCEDURE, Name[, Py, ..., P
Arguments

Name

A string containing the name of the procedure do be called. This argument can be a
variable, which alows the called procedure to be determined at runtime.
P;

The arguments to be passed to the procedure given by Name. These arguments are the
positional and keyword arguments documented for the called procedure, and are
passed to the called procedure exactly asif it had been called directly.

Example
The following example shows how to call the PLOT procedure indirectly with a
number of arguments. First, create a dataset for plotting by entering:
B = FI NDGEN(100)
Call PLOT indirectly to create a polar plot by entering:
CALL_PROCEDURE, 'PLOT', B, B, /POLAR
A “spira” plot should appear.

Version History

Pre4.0 I ntroduced

CALL_PROCEDURE IDL Reference Guide

Chapter 3: Procedures and Functions 231

See Also

CALL_FUNCTION, CALL_METHOD, EXECUTE

IDL Reference Guide CALL_PROCEDURE

232

CANNY

Chapter 3: Procedures and Functions

The CANNY function implements the Canny edge-detection a gorithm.

The Canny edge-detection algorithm has the following steps:

1

CANNY

Smooth the image with a Gaussian filter. A 5x5 kernel with agiven sigmais
used.

Compute the gradient orientation and magnitude. A pair of 3x3 convolution
masks are used, one for estimating the gradient in the x-direction (G,):

-101
202
-101

and the other for estimating the gradient in the y-direction (G):

121
00O
-1-2-1

The magnitude of the gradient is approximated using ,/(G,)? + (G)?.
The edge direction is calculated using ATAN(G,, G,).

IDL Reference Guide

Chapter 3: Procedures and Functions 233

This edge direction isthen related to adirection that can be traced in an image,
assigning each value to one of four sectors (0, 1, 2, or 3) asfollows:

Figure 3-15: Relating Edge Direction to Direction in an Image

4. Anedge point is defined to be a point whose gradient magnitude is locally
maximum in the direction of the gradient. This process, which resultsin ridges
one pixel wide, is called nonmaxima suppression. After nonmaxima
suppression one ends up with an image which is zero everywhere except at the
local maxima points. At the local maxima points the value of the gradient
magnitude is preserved.

5. Hysteresisis applied to eliminate gaps. Any pixel in the nonmaxima
suppression image that has avalue greater than T_HIGH (high threshold
calculated from HIGH) is presumed to be an edge pixel, and is marked as such
immediately. Then any pixels that are connected to this edge pixel and that
have a value greater than T_L OW (low threshold calculated from LOW) are
also selected as edge pixels. All edges are followed until the value drops below
T_LOW.

IDL Reference Guide CANNY

234 Chapter 3: Procedures and Functions

Syntax

Result = CANNY (Image [, HIGH=valug] [, LOW=value] [, SIGMA=valug])
Return Value

Theresult is abyte array containing the edges in the image.
Arguments

Image

A 2D image array.
Keywords

HIGH

The high value used to cal culate the high threshold during edge detection, given asa
factor of the histogram of the magnitude array. The input range is [0-1]. The default
valueis0.8. If the input value is outside the allowable range of [LOW-1], it issilently
clipped to fall into that range.

LOW

The low value used to calculate the low threshold during edge detection, given as a
factor of the HIGH value. The input rangeis[0-1]. The default value is 0.4. If the
input value is outside the allowable range of [0-1], it is clipped to fall into that range.

SIGMA

The sigma value used when creating the Gaussian kernel. The default valueis 0.6

Version History

6.3 Introduced

CANNY IDL Reference Guide

Chapter 3: Procedures and Functions 235

CASE

The CASE statement selects one, and only one, statement for execution, depending
on the value of an expression. This expression is called the case selector expression.
Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If amatch is
found, the statement is executed and control resumes directly below the CASE
Statement.

The EL SE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For thisreason, it is usually
written as the last clause in the CASE statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an ELSE clauseis not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

In this CASE statement, only one clause is selected, and that clause isthefirst one

whose value is equal to the value of the case selector expression.

Tip
Each clauseistested in order, so it ismost efficient to order the most frequently
selected clausesfirst.

CASE issimilar to the SWITCH statement. For more information on using CASE
and other IDL program control statements, as well as the differences between CASE
and SWITCH, see Chapter 7, “Program Control” in the Building IDL Applications
manual.

Syntax

CASE expression OF

expression: statement

expression; statement
[ELSE: statement]
ENDCASE

IDL Reference Guide CASE

236 Chapter 3: Procedures and Functions

Examples

This example illustrates how the CASE statement, unlike SWITCH, executes only
the one statement that matches the case expression:

X=2

CASE x OF
1. PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'
ENDCASE

IDL Prints:

t wo

Version History

Original Introduced

CASE IDL Reference Guide

Chapter 3: Procedures and Functions 237

CATCH

The CATCH procedure provides a generalized mechanism for the handling of
exceptions and errors within IDL. Calling CATCH establishes an error handler for
the current procedure that intercepts al errorsthat can be handled by IDL, excluding
non-fatal warnings such as math errors (e.g., floating-point underflow).

When an error occurs, each active procedure, beginning with the offending procedure
and proceeding up the call stack to the main program level, is examined for an error
handler (established by acall to CATCH). If an error handler is found, control
resumes at the statement after the call to CATCH. Theindex of the error isreturned in
the argument to CATCH. The 'ERROR_STATE system variableis also set. The
associated error messageis stored in 'ERROR_STATE.MSG. If no error handlers are
found, program execution stops, an error message is issued, and control revertsto the
interactive mode. A call to ON_IOERROR in the procedure that causes an 1/O error
supersedes CATCH, and takes the branch to the label defined by ON_IOERROR.

This mechanism is similar, but not identical to, theset j np/ | ongj np facilitiesin C
and thecat ch/ t hr owfacilitiesin C++.

Error handling is discussed in more detail in “Controlling and Recovering from
Errors’ in Chapter 8 of the Building IDL Applications manual.

Syntax
CATCH, [Variable] [, /CANCEL]
Arguments

Variable

A named variable in which the error index is returned. When an error handler is
established by acall to CATCH, Variableis set to zero. If an error occurs, Variableis
set to the error index, and control istransferred to the statement after the call to
CATCH. The error index is also returned in the CODE field of the 'ERROR_STATE
system variable, i.e.,, '"ERROR_STATE.CODE.

IDL Reference Guide CATCH

238

Keywords

CANCEL

Chapter 3: Procedures and Functions

Set this keyword to cancel the error handler for the current procedure. This
cancellation does not affect other error handlers that may be established in other
active procedures.

Note

If the CANCEL keyword is set, the Variable argument must not be present.

Examples

The following procedure illustrates the use of CATCH:

PRO CATCH _EXAMPLE

1

Define variable A

A = FLTARR(10)

)

)

Establish error handler. Wien errors occur, the index of the
error is returned in the variable Error_status:

CATCH, Error_status

; This statenent begins the error handl er:
IF Error_status NE O THEN BEG N

PRI NT, "Error index: ', Error_status

PRI NT, '"Error nessage: ', ! ERROR _STATE. MG
Handl e the error by extending A

A=FLTARR(12)

CATCH, / CANCEL

ENDI F

)

Cause an error:

Al 11] =12

1

1

)

Even though an error occurs in the |line above, program
execution continues to this point because the event handl er
extended the definition of A so that the statenent can be
re- execut ed.

HELP, A

END

CATCH

IDL Reference Guide

Chapter 3: Procedures and Functions 239

Running the CATCH_EXAMPLE procedure causes IDL to produce the following
output and control returnsto the interactive prompt:

Error index: -144

Error nessage:

Attenpt to subscript Awith <INT (11)> is out of range.
A FLOAT = Array[12]

Version History

Pre4.0 Introduced

See Also

IERROR_STATE, ON_ERROR, ON_IOERROR, “Controlling and Recovering from
Errors’ in Chapter 8 of the Building IDL Applications manual.

IDL Reference Guide CATCH

240 Chapter 3: Procedures and Functions

CD

The CD procedure is used to set and/or change the current working directory. This
routine changes the working directory for the IDL session and any child processes
started from IDL during that session after the directory change is made. Under UNIX,
CD does not affect the working directory of the processthat started IDL. The
PUSHD, POPD, and PRINTD procedures provide a convenient interface to CD.

IDL’s default current working directory depends on the platform and method used to
invoke IDL:

e Under Microsoft Windows, the default current working directory is controlled
by the value of the IDL_WDE_START_DIR preference.

e Under UNIX with the command-lineinterface (i dl), the default current
working directory is the directory from which IDL was started.

e Under UNIX with the graphical interface (i dl de), the default current working
directory is controlled by the value of the IDL_MDE_START_DIR preference.

Syntax
CD [, Directory] [, CURRENT=variable]
Arguments

Directory

A scalar string specifying the path of the new working directory. If Directory is
specified asanull string, the working directory is changed to the user’s home
directory (UNIX) or to the directory specified by !DIR (Windows). If this argument
is not specified, the working directory is not changed.

Keywords
CURRENT

If CURRENT is present, it specifies anamed variableinto which the current working
directory is stored as a scalar string. The returned directory is the working directory
before the directory is changed. Thus, you can obtain the current working directory
and changeit in asingle statement:

CD, new_dir, CURRENT=old_dir

CD IDL Reference Guide

Chapter 3: Procedures and Functions 241

Note
The return value of the CURRENT keyword does not include a directory separator
at the end of the string.

Examples

Windows

To change drives:
co, 'C

To specify afull path:
CD, ' C \ MWData\January’

To change from the C. \ MyDat a directory to the C: \ MyDat a\ January directory:
CD, 'January’

To go back up adirectory, use“..”. For example, if the current directory is
C. \ WyDat a\ January, you could go up to the C: \ MyDat a directory with the
following command:

D, °
If the current directory is C: \ MyDat a\ Januar y, you could change to the
C: \ MyDat a\ Febr uar y directory with the following command:

CD, '..\February'
Unix
To specify afull path:

CD, '/hone/datal’
To change to thej anuar y subdirectory of the current directory:

CD, 'january'

To go back up adirectory, use“..”. For example, if the current directory is
/ hone/ dat a/ j anuary, you could go up to the/ hone/ dat a/ directory with the
following command:

cD, '

If the current directory is/ hone/ dat a/ j anuar y, you could change to the
/ hone/ dat a/ f ebr uar y directory with the following command:

CD, '../february'

IDL Reference Guide CD

242

Version History

Chapter 3: Procedures and Functions

Pre4.0 Introduced

See Also

PUSHD, POPD

CD

IDL Reference Guide

Chapter 3: Procedures and Functions 243

CDF Routines

For information, see Chapter 2, “Common Data Format” in the IDL Scientific Data
Formats manual.

IDL Reference Guide CDF Routines

244 Chapter 3: Procedures and Functions
CEIL

The CEIL function returns the closest integer greater than or equal to its argument.
Syntax
Result = CEIL(X [, /L64])

Return Value

If the input value X isinteger type, Result has the same value and type as X.
Otherwise, Result is a 32-bit longword integer with the same structure as X.

Arguments
X

The value for which the ceiling function is to be evaluated. This value can be any
numeric type (integer, floating, or complex).

Keywords

L64

If set, the result type is 64-bit integer regardless of the input type. Thisis useful for
situations in which a floating point number contains a value too large to be
represented in a 32-bit integer.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

CEIL IDL Reference Guide

Chapter 3: Procedures and Functions 245

Examples

To print the ceiling function of 5.1, enter:

PRI NT, CEIL(5.1)
IDL prints:
6

To print the ceiling function of 3000000000.1, the result of which istoo large to
represent in a 32-bit integer:

PRI NT, CEI L(3000000000. 1D, /L64)
IDL prints:
3000000001

Version History

Pre4.0 Introduced

See Also

COMPLEXROUND, FLOOR, ROUND

IDL Reference Guide CEIL

246 Chapter 3: Procedures and Functions

CHEBYSHEV

The CHEBY SHEV function returns the forward or reverse Chebyshev polynomial
expansion of a set of data. Note: Results from this function are subject to roundoff
error given discontinuous data.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
chebyshev. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = CHEBY SHEV(D, N)
Return Value

Returns the forward or reverse Chebyshev polynomial expansion of a set of data.
Arguments

D
A vector containing the values at the zeros of Chebyshev polynomial.
N

A flag that, if set to -1, returns a set of Chebyshev polynomials. If set to +1, the
original datais returned.

Keywords
None.

Version History

Original Introduced

See Also

FFT, WTN

CHEBYSHEV IDL Reference Guide

Chapter 3: Procedures and Functions 247

CHECK_MATH

The CHECK_MATH function returns and clears the accumulated math error status.
Syntax

Result = CHECK_MATH([, MASK=bitmask] [, /NOCLEAR] [, /PRINT])
Return Value

The returned value is the sum of the bit values (described in the following table) of
the accumulated errors.

Value Condition
0 No errors detected since the last interactive prompt or call to
CHECK_MATH
1 Integer divided by zero
2 Integer overflow

16 Floating-point divided by zero

32 Floating-point underflow

64 Floating-point overflow

128 Floating-point operand error. An illegal operand was
encountered, such as a negative operand to the SQRT or
ALOG functions, or an attempt to convert to integer a
number whose absolute value is greater than 2311

Table 3-2: Math Error Status Values

Note
CHECK_MATH can only relay information reported by the underlying hardware.
Some hardware/operating system combinations may not report all of the math
errors listed.

Each type of error is only represented once in the return value—any number of
“Integer divided by zero” errorswill result in areturn value of 1.

IDL Reference Guide CHECK_MATH

248 Chapter 3: Procedures and Functions

The math error statusis cleared (reset to zero) when CHECK_MATH iscalled, or
when errors are reported. Math errors are reported either never, when the interpreter
returns to an interactive prompt, or after execution of each IDL statement, depending
on the value of the 'EXCEPT system variable (see “!EXCEPT” on page 5035). See
“Examples’ below for further discussion.

Keywords
MASK

If present, the mask of exceptions to check. Otherwise, all exceptions are checked.
Exceptions that are pending but not specified by MASK are not reported, and not
cleared. Set this keyword egual to the sum of the bit values for each exception to be
checked. For alist of the bit values corresponding to various exceptions, see
CHECK_MATH.

NOCLEAR

By default, CHECK _MATH returns the pending exceptions (as specified viathe
MASK keyword) and clears them from itslist of pending exceptions. If NOCLEAR
is set, the exceptions are not cleared and remain pending.

PRINT

Set this keyword to print an error message to the IDL command log if any
accumulated math errors exist. If this keyword is not present, CHECK_MATH
executes silently.

Examples

To simply check and clear the accumulated math error status using all the defaults,
enter:

PRI NT, CHECK_MATH()
IDL prints the accumulated math error status code and resets to zero.

CHECK_MATH and 'EXCEPT

Because the accumulated math error statusis cleared when it isreported, the behavior
and appropriate use of CHECK_MATH depends on the value of the system variable
IEXCEPT.

CHECK_MATH IDL Reference Guide

Chapter 3: Procedures and Functions 249

o If IEXCEPT isset equal to O, math exceptions are not reported automatically,
and thus CHECK_MATH will always return the error status accumulated since
the last time it was called.

o If IEXCEPT isset equal to 1, math exceptions are reported when IDL returns
to the interactive command prompt. In this case, CHECK_MATH will return
appropriate error codes when used within an IDL procedure, but will always
return zero when called at the IDL prompt.

o |f ITEXCEPT isset equal to 2, math exceptions are reported after each IDL
statement. In this case, CHECK_MATH will return appropriate error codes
only when used within an IDL statement, and will always return zero
otherwise.

For example:
:Set val ue of ! EXCEPT to zero.
I EXCEPT=0
; Both of these operations cause errors.
PRINT, 1./0., 1/0
IDL prints:
I nf 1

The special floating-point value Inf isreturned for 1./0. There is no integer analogue
to the floating-point Inf.

; Check the accunul ated error status.
PRI NT, CHECK_MATH()

IDL prints:
17
CHECK_MATH reports floating-point and integer divide-by-zero errors.

; Set val ue of ! EXCEPT to one.
| EXCEPT=1
; Both of these operations cause errors.
PRINT, 1./0., 1/0
IDL prints:

I nf 1
% Program caused arithnetic error: Integer divide by 0
% Program caused arithnmetic error: Floating divide by 0

IDL Reference Guide CHECK_MATH

250 Chapter 3: Procedures and Functions

Thistime IDL also prints error messages.

: Check the accunul ated error status.
PRI NT, CHECK_MATH()

IDL prints:
0
The status was reset.

However, if we do not allow IDL to return to an interactive prompt before checking
the math error status:

; Set val ue of ! EXCEPT to one.
I EXCEPT=1

;Call to CHECK_MATH happens before returning to the
;1 DL conmand pronpt.
PRINT, 1./0., 1/0 & PRI NT, CHECK MATH()

IDL prints:

I nf 1
17

In this case, the math error status code (17) is printed, but because the error status has
been cleared by the call to CHECK_MATH, no error messages are printed when IDL
returns to the interactive command prompt. Finally,

;Set val ue of ! EXCEPT to two.
I EXCEPT=2

;Call to CHECK _MATH happens before returning to the
; 1 DL command pronpt.
PRINT, 1./0., 1/0 & PRINT, CHECK MATH()

IDL prints:

I nf 1
% Program caused arithmetic error: Integer divide by O
% Program caused arithnmetic error: Floating divide by 0
% Detected at S$MAI NS

0

Errors are printed before executing the CHECK _MATH function, so
CHECK_MATH reports no errors. However, if we include the call to
CHECK_MATH in the first PRINT command, we see the following:

;Call to CHECK MATH is part of a single IDL statenent.
PRINT, 1./0., 1/0, CHECK_MATH()

CHECK_MATH IDL Reference Guide

Chapter 3: Procedures and Functions 251

IDL prints:
| nf 1 17

Printing Error Messages

The following code fragment prints abbreviated names of errors that have occurred:

;Create a string array of error nanes.
ERRS = ['Divide by 0', 'Underflow, 'Overflow, $
"I'll egal Operand']

:Get math error status.
J = CHECK_MATH()
FORI1 =4, 7 DOIF ISHFT(J, -1) AND 1 THEN $

; Check to see if an error occurred and print the correspondi ng
;error nmessage.
PRI NT, ERRS(1-4), ' Cccurred

Testing Critical Code

Example 1

Assume you have a critical section of code that is likely to produce an error. The
following example shows how to check for errors, and if oneis detected, how to
repeat the code with different parameters.

; Clear error status from previous operations, and print error
; messages if an error exists:
JUNK = CHECK_MATH(/ PRI NT)

; Disable automatic printing of subsequent math errors:
I EXCEPT=0

;Critical section goes here.
AGAI N:

; Did an arithmetic error occur? If so, print error nessage and
; request new val ues:

I F CHECK_MATH() NE 0 THEN BEG N

PRI NT, 'Math error occurred in critical section.'

; Get new paraneters from user:
READ, 'Enter new values.',...

; Enabl e automatic printing of math errors:
I EXCEPT=2

IDL Reference Guide CHECK_MATH

252 Chapter 3: Procedures and Functions

;And retry:
GOTO, AGAIN
ENDI F

Example 2

This example demonstrates the use of the MASK keyword to check for a specific
error, and the NOCLEAR keyword to prevent exceptions from being cleared:

PRO EXAMPLE2_CHECKVATH

PRINT, 1./0
PRI NT, CHECK_MATH(MASK=16, / NOCLEAR)
PRI NT, CHECK_MATH(MASK=2, / NOCLEAR)

END
IDL prints:

I nf

16

0

% Program caused arithmetic error: Floating divide by O

Version History

Original Introduced

See Also

FINITE, ISHFT, MACHAR, “!VALUES’ on page 5031, “!EXCEPT” on page 5035,
“Math Errors’ in Chapter 8 of the Building IDL Applications manual.

CHECK_MATH IDL Reference Guide

Chapter 3: Procedures and Functions 253

CHISQR CVF

The CHISQR_CVF function computes the cutoff value V in a chi-square distribution
with Df degrees of freedom such that the probability that a random variable X is
greater than V is equal to a user-supplied probability P.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
chi sqr_cvf. prointheli b subdirectory of the IDL distribution.

Syntax
Result = CHISQR_CVF(P, Df)
Return Value
Returns computes the cutoff value V in a chi-square distribution with Df degrees of
freedom such that the probability that arandom variable X is greater than V isequal to
a user-supplied probability P.
Arguments
P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Df

A positive integer, single- or double-precision floating-point scalar that specifiesthe
number of degrees of freedom of the chi-square distribution.

Keywords

None.

IDL Reference Guide CHISQR_CVF

254 Chapter 3: Procedures and Functions

Examples

Use the following command to compute the cutoff value in a chi-square distribution
with three degrees of freedom such that the probability that arandom variable X is
greater than the cutoff value is 0.100. The result should be 6.25139.

PRI NT, CHI SQR CVF(0.100, 3)
IDL prints:
6. 25139

Version History

4.0 I ntroduced

See Also

CHISQR_PDF, F_CVF, GAUSS CVF, T_CVF

CHISQR_CVF IDL Reference Guide

Chapter 3: Procedures and Functions 255

CHISQR _PDF

The CHISQR_PDF function computes the probability P that, in a chi-square
distribution with Df degrees of freedom, arandom variable X islessthan or equal to a
user-specified cutoff value V.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
chi sqr_pdf. prointheli b subdirectory of the IDL distribution.

Syntax
Result = CHISQR_PDF(V, Df)
Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of V and Df, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If any of the arguments are double-precision, the result is double-precision, otherwise
the result is single-precision.

Arguments

\Y
A scalar or array that specifies the cutoff value(s).
Df

A positive scalar or array that specifies the number of degrees of freedom of the chi-
square distribution.

Keywords

None.

IDL Reference Guide CHISQR_PDF

256 Chapter 3: Procedures and Functions

Examples

Use the following command to compute the probability that arandom variable X,
from the chi-sguare distribution with three degrees of freedom, isless than or equal to
6.25. The result should be 0.899939.

result = CH SQR_PDF(6. 25, 3)
PRI NT, result

IDL prints:
0. 899939

Compute the probability that arandom variable X from the chi-square distribution
with three degrees of freedom, is greater than 6.25. The result should be 0.100061.

PRINT, 1 - chisqgr_pdf(6.25, 3)
IDL prints:
0. 100061

Version History

4.0 I ntroduced

See Also

BINOMIAL, CHISQR_CVF, F_PDF, GAUSS _PDF, T_PDF

CHISQR_PDF IDL Reference Guide

Chapter 3: Procedures and Functions 257

CHOLDC

Given a positive-definite symmetric n by n array A, the CHOLDC procedure
constructs its Cholesky decomposition A = LL", whereL isalower triangular array
and LT isthe transpose of L.

CHOLDC is based on the routine chol dc described in section 2.9 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, use the LA_CHOLDC procedure instead.

Syntax
CHOLDC, A, P [, /DOUBLE]
Arguments
A

Ann by narray. Oninput, only the upper triangle of A need be given. On output, L is
returned in the lower triangle of A, except for the diagonal elements, which are
returned in the vector P.

Note
If CHOLDC is complex then only the real part is used for the computation.

P

An n-element vector containing the diagonal elements of L.
Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
Examples

See “CHOLSOL” on page 259.

IDL Reference Guide CHOLDC

258

Version History

Chapter 3: Procedures and Functions

4.0

I ntroduced

See Also

CHOLSOL, LA_CHOLDC

CHOLDC

IDL Reference Guide

Chapter 3: Procedures and Functions 259

CHOLSOL

The CHOL SOL function returns an n-element vector containing the solution to the
set of linear equations Ax = b, where A is the positive-definite symmetric array
returned by the CHOLDC procedure.

CHOLSOL is based on theroutine chol sl described in section 2.9 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, usethe LA_CHOLSOL procedure instead.

Syntax
Result = CHOLSOL(A, P, B[, /DOUBLE])

Return Value

Returns an n-element vector containing the solution to the set of linear equations
Ax = b, where A is the positive-definite symmetric array returned by the CHOLDC.

Arguments
A

An n by n positive-definite symmetric array, as output by CHOLDC. Only the lower
triangle of A is accessed.

Note
If CHOLSOL is complex then only the real part is used for the computation.

P

The diagonal elements of the Cholesky factor L, as computed by CHOLDC.
B

An n-element vector containing the right-hand side of the equation.

IDL Reference Guide CHOLSOL

260

Keywords

DOUBLE

Chapter 3: Procedures and Functions

Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

To solve a positive-definite symmetric system Ax = b:

;Define the coefficient array:

A=1[[6.0,

15.0, 55.0], $

[15.0, 55.0, 225.0], $
[55.0, 225.0, 979.0]]

; Define the right-hand side vector B:

B=1[9.5 50.0, 237.0]

; Comput e Chol esky deconposition of A

CHOLDC, A P

; Compute and print the solution:
PRI NT, CHOLSOL(A, P, B)

IDL prints:

-0.499998 -1.00000 0.500000

The exact solution vector is[-0.5, -1.0, 0.5].

Version History

4.0

Introduced

See Also

CHOLDC, CRAMER, GS ITER, LA_CHOLSOL, LU_COMPLEX, LUSOL,
SVSOL, TRISOL

CHOLSOL

IDL Reference Guide

Chapter 3: Procedures and Functions 261

CINDGEN

The CINDGEN function returns a complex, single-precision, floating-point array
with the specified dimensions.

Syntax
Result = CINDGEN(Dy][, ..., Dg])
Return Value

Returns a complex, single-precision, floating-point array with the specified
dimensions. Each element of the array hasitsreal part set to the value of its one-
dimensional subscript. The imaginary part is set to zero.

Arguments
Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either ascalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new

array.
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide CINDGEN

262 Chapter 3: Procedures and Functions

Examples

To create C, a 4-element vector of complex values with the real parts set to the value
of their subscripts, enter:

C = C NDGEN(4)

Version History

Original Introduced

See Also

BINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN

CINDGEN IDL Reference Guide

Chapter 3: Procedures and Functions 263

CIR_3PNT

The CIR_3PNT procedure returns the radius and center of a circle, given 3 points on
the circle. Thisis analogous to finding the circumradius and circumcircle of a
triangle; the center of the circumcircle isthe point at which the three perpendicul ar
bisectors of the triangle formed by the points meet.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cir_3pnt.prointheli b subdirectory of the IDL distribution.

Syntax
CIR_3PNT, X, Y, R, X0, YO
Arguments
X

A three-element vector containing the X-coordinates of the points.

Y

A three-element vector containing the Y-coordinates of the points.

R

A named variable that will contain the radius of the circle. The procedure returns 0.0
if the points are co-linear.

X0

A named variable that will contain the X-coordinate of the center of the circle. The
procedure returns 0.0 if the points are co-linear.

YO

A named variable that will contain the Y-coordinate of the center of thecircle. The
procedure returns 0.0 if the points are co-linear.

Keywords

None.

IDL Reference Guide CIR_3PNT

264 Chapter 3: Procedures and Functions

Examples
X =1[1.0, 2.0, 3.0]
Y =[1.0, 2.0, 1.0]
CIR_3PNT, X, Y, R X0, YO
PRINT, 'The radius is: ', R
PRI NT, 'The center of the circle is at: ', X0, YO

Version History

Pre4.0 Introduced

See Also

PNT_LINE, SPH_4PNT

CIR_3PNT IDL Reference Guide

Chapter 3: Procedures and Functions 265

CLOSE

The CLOSE procedure closes the file units specified as arguments. All open files are
also closed when IDL exits.

Syntax

CLOSE[, Unity, ..., Unit] [, /ALL] [, EXIT_STATUS=variable] [, /FILE]
[, IFORCE]

Arguments
Unit;
The IDL file unitsto close.
Keywords
ALL

Set this keyword to close all open file units. In addition, any file units that were
alocated viaGET _LUN are freed.

EXIT_STATUS

Set this keyword to a named variable that will contain the exit status reported by a
UNIX child process started viathe UNIT keyword to SPAWN. Thisvalue is the exit
value reported by the process by calling EXIT, and is analogous to the value returned
by $? under most UNIX shells. If used with any other type of file, O is returned.
EXIT_STATUS s not allowed in conjunction with the ALL or FILE keywords.

FILE

Set this keyword to close all file units from 1 to 99. File units greater than 99, which
are associated with the GET_LUN and FREE_LUN procedures, are not affected.

FORCE

Overrides the IDL file output buffer and forces the file to be closed no matter what
errors occur in the process.

IDL buffersfile output for performance reasons. If it is not possible to properly flush
this datawhen afile closeis requested, an error is normally issued and thefile

IDL Reference Guide CLOSE

266 Chapter 3: Procedures and Functions

remains open. An example of thismight be that your disk does not have room to write
the remaining data. This default behavior prevents datafrom being lost. To override it
and force the file to be closed no matter what errors occur in the process, specify

FORCE.

Examples

If file units 1 and 3 are open, they can both be closed at the same time by entering the
command:

CLCSE, 1, 3

Version History

Origind Introduced
See Also
OPENR/OPENU/OPENW

CLOSE IDL Reference Guide

Chapter 3: Procedures and Functions 267

CLUST WTS

The CLUST_WTS function computes the weights (the cluster centers) of an n-
column, m-row array, where n is the number of variables and misthe number of
observations or samples. CLUST_WTS uses k-means clustering. With thistechnique,
CLUST_WTS starts with k random clusters and then iteratively movesitems between
clusters, minimizing variability within each cluster and maximizing variability
between clusters.

Note
Because the initial clusters are chosen randomly, your results may differ dightly
each timethe CLUST_WTS routine isinvoked, even for the same input data. For
data with well-defined clusters the differences should be slight. For randomly-
scattered data (no distinguishable clusters), the results may be significantly
different, which may indicate that k-means clustering is not appropriate for your
data.

Tip
For hierarchical tree clustering, see the CLUSTER_TREE function.

For more information on cluster analysis, see:

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Syntax

Result = CLUST_WTS(Array [, /DOUBLE] [, N_CLUSTERS=valug]
[, N_ITERATIONS=integer] [, VARIABLE_WTS=vector])

Return Value
Returns an m-column, N_CLUSTERS-row array of cluster centers by computing the

weights (the cluster centers) of an n-column, m-row array, where n is the number of
variables and mis the number of observations or samples.

IDL Reference Guide CLUST WTS

268

Chapter 3: Procedures and Functions

Arguments

Array

An n-column, m-row array of any datatype except string, single- or double-precision
complex.

Keywords
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
N _CLUSTERS

Set this keyword equal to the number of cluster centers. The default isto compute m
cluster centers.

N_ITERATIONS

Set this keyword equal to the number of iterations used when in computing the
cluster centers. The default isto use 20 iterations.

VARIABLE_WTS

Set this keyword equal to an m-element vector of floating-point variable weights. The
elements of this vector are used to give greater or lesser importance to each variable
(each column) in determining the cluster centers. The default isto give al variables
equal weighting using avalue of 1.0.

Examples
See “CLUSTER” on page 270.

Version History

5.0 Introduced

CLUST_WTS IDL Reference Guide

Chapter 3: Procedures and Functions 269

See Also

CLUSTER, CLUSTER_TREE, “Multivariate Analysis’ in Chapter 12 of the Using
IDL manua

IDL Reference Guide CLUST WTS

270 Chapter 3: Procedures and Functions

CLUSTER

The CLUSTER function computes the classification of an n-column, m-row array,
where n isthe number of variables and misthe number of observations or samples.
CLUST_WTS uses k-means clustering. With thistechnique, CLUST _WTS dtarts
with k random clusters and then iteratively moves items between clusters,
minimizing variability within each cluster and maximizing variability between
clusters.

Note
Because the initial clusters are chosen randomly, your results may differ dightly
each timethe CLUST_WTS routine isinvoked, even for the same input data. For
data with well-defined clusters the differences should be slight. For randomly-
scattered data (no distinguishable clusters), the results may be significantly
different, which may indicate that k-means clustering is not appropriate for your
data.

Tip
For hierarchical tree clustering, seethe CLUSTER_TREE function.

For more information on cluster analysis, see:

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Syntax
Result = CLUSTER(Array, Weights[, /DOUBLE] [, N_CLUSTERS=valug])
Return Value

Resultsin a 1-column, m-row array of cluster number assignments that correspond to
each sample.

Arguments

Array

An n-column, m-row array of type float or double.

CLUSTER IDL Reference Guide

Chapter 3: Procedures and Functions 271

Weights

An array of weights (the cluster centers) computed using the CLUST_WTS function.
The dimensions of this array vary according to keyword values.

Keywords

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.
N CLUSTERS

Set this keyword equal to the number of clusters. The default is based upon the row
dimension of the Weights array.

Examples

; Construct 3 separate clusters in a 3D space:
n = 50

cl = RANDOMN\(seed, 3, n)

c1[0:1,*] -= 3

c2 = RANDOMN\(seed, 3, n)

c2[0,*] += 3

c2[1,*] -=3

c3 = RANDOMN(seed, 3, n)

c3[1:2,*] += 3

array = [[c1l], [c2], [c3]]

; Conpute cluster weights, using three clusters:
wei ghts = CLUST_WIS(array, N_CLUSTERS = 3)

; Conpute the classification of each sanple:
result = CLUSTER(array, weights, N _CLUSTERS = 3)

; Plot each cluster using a different synbol:

| PLOT, array[*, WHERE(result eq 0)], $
LI NESTYLE = 6, SYM INDEX = 2

| PLOT, array[*, WHERE(result eq 1)], /OVERPLOT, $
LI NESTYLE = 6, SYM INDEX = 4

| PLOT, array[*, WHERE(result eq 2)], /OVERPLOT, $
LI NESTYLE = 6, SYM INDEX = 1

IDL Reference Guide CLUSTER

272 Chapter 3: Procedures and Functions

&l IDL iPlot [Untitled*] : =131=]

File Edit Insert Operations ‘Window Help

D||E|E] of | [zl o] [ola|-]=] AlNolo|e|e|

i \n“\w\ T

2l
o I3
v
a

CLm

T T

|C|ick ta select items, click and drag to select multiple items |[592,EDE]

Figure 3-16: CLUSTER Example

Version History

5.0 Introduced

See Also

CLUST_WTS, CLUSTER_TREE, PCOMP, STANDARDIZE, “Multivariate
Analysis’ in Chapter 12 of the Using IDL manual.

CLUSTER IDL Reference Guide

Chapter 3: Procedures and Functions 273

CLUSTER_TREE

The CLUSTER_TREE function computes the hierarchical clustering for aset of m
itemsin an n-dimensional space. The CLUSTER_TREE function is designed to be
used with the DENDROGRAM or DENDRO_PLOT procedures.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cluster_tree. prointheli b subdirectory of the IDL distribution.

Syntax

Result = CLUSTER_TREE(Pairdistance, Linkdistance [, LINKAGE = valug])
or for LINKAGE = 3 (centroid):

Result = CLUSTER_TREE(Pairdistance, Linkdistance, LINKAGE = 3,
[, DATA = array] [, MEASURE=value] [, POWER_MEASURE=valug])

Return Value

The Result is a 2-by-(m-1) integer array containing the cluster indices. Each row of
Result contains the indices of the two items that were clustered together. The distance

between the two items is contained in the corresponding element of the Linkdistance
output argument.

Note

Theorigina mitemsare givenindices 0...m-1, while each newly-created cluster is
given anew index starting at mand incrementing.

Arguments

Pairdistance

Aninput array containing the pairwise distances as either a compact vector or asa
symmetric matrix, usually created by the DISTANCE_MEASURE function. For the
compact vector form, Pairdistance should be an m* (m-1)/2 element vector, ordered
as: [Do, 1, Do, 2, - Do, m-1, D1, 2, -+ D2, m-1l, where D; ; denotes the distance
between itemsi and j. For the matrix form, Pairdistance should be an m-by-m
symmetric matrix with zeroes down the diagonal.

IDL Reference Guide CLUSTER_TREE

274 Chapter 3: Procedures and Functions

Linkdistance

Set this argument to a named variable in which the cluster distances will be returned
as an (m-1)-element single or double-precision vector. Each element of Linkdistance
corresponds to the distance between the two items of the corresponding row in
Result. If Pairdistance is double-precision then Linkdistance will be double-
precision, otherwise Linkdistance will be single-precision.

Keywords

DATA

If the LINKAGE keyword is set equal to 3 (centroid), then the DATA keyword must
be set to the array of original data as input to the DISTANCE_MEASURE function.
The data array is necessary for computing the centroid of newly-created clusters.

Note
DATA does not need to be supplied if LINKAGE is not equal to 3.

LINKAGE

Set this keyword to an integer giving the method used for linking clusters together.
Possible values are:

Value Method Used

0 (Default) Use single linkage (nearest neighbor). The distance
between two clustersis defined as the smallest distance
between items in the two clusters. This method tends to string
items together and is useful for non-homogeneous clusters.

1 Use complete linkage (furthest neighbor). The distance
between two clustersis defined asthe largest distance between
items. This method is useful for homogeneous, compact,
clusters but is not useful for long chain-like clusters.

Table 3-3: LINKAGE Values and Methods

CLUSTER_TREE IDL Reference Guide

Chapter 3: Procedures and Functions 275

Value Method Used

2 Use weighted pairwise average. The distance between two
clustersis defined as the average distance for all pairs of
objects between each cluster, weighted by the number of
objects in each cluster. This method works well for both
homogeneous clusters and for chain-like clusters.

3 Use weighted centroid. The distance between two clustersis
defined as the distance between the centroids of each cluster.
The centroid of a cluster is the average position of all the
subclusters, weighted by the number of objectsin each
subcluster.

Table 3-3: LINKAGE Values and Methods (Continued)

Note
If the LINKAGE keyword is equal to 3, the distance between two clusters may be
less than the distance between items within one of the clusters. In adendrogram plot
thiswill cause the node lines to overlap.

MEASURE

If the LINKAGE keyword is equal to 3 (centroid), set this keyword to an integer
giving the distance measure (the metric) to use. Possible values are:

Value Type
0 (Default) Euclidean distance
1 CityBlock (Manhattan) distance
2 Chebyshev distance
3 Correlative distance
4 Percent disagreement

Table 3-4: MEASURE Values

For consistent results, the MEASURE value should match the value used in the
origina call to DISTANCE _MEASURE. Thiskeyword isignored if LINKAGE is
not equal to 3, or if POWER_MEASURE is set.

IDL Reference Guide CLUSTER_TREE

276 Chapter 3: Procedures and Functions

Note
See DISTANCE_MEASURE for a detailed description of the various metrics.

POWER_MEASURE

If the LINKAGE keyword is equal to 3 (centroid), set this keyword to ascalar or a
two-element vector giving the parameters p and r to be used in the power distance
metric. If POWER_MEASURE is ascaar then the same value is used for both p and
r. For consistent results, the POWER_MEA SURE value should match the value used
inthe original call to DISTANCE_MEASURE. This keyword isignored if
LINKAGE is not equal to 3.

Note
See DISTANCE_MEASURE for adetailed description of the power distance
metric.
Example
; Gven a set of points in two-dinensional space.
DATA=[$
[1, 1], $
[1, 3], $
[2, 2.2], $
[4, 1.75], $
[4, 4], $
[5, 1], $
[5.5, 3]]

; Conpute the Euclidean di stance between each point.
DI STANCE = DI STANCE _MEASURE(dat a)

Now conpute the cluster analysis.
CLUSTERS = CLUSTER TREE(di stance, |inkdistance)

PRINT, 'Iltem# Item# Di stance'
PRI NT, [clusters, TRANSPOSE(!i nkdistance)], $
FORMAT=' (13, 17, F10.2)'

CLUSTER_TREE IDL Reference Guide

Chapter 3: Procedures and Functions 277

When this codeis run, IDL prints:
Item# Item# Distance

5 3 1.25
2 1 1.28
8 0 1.56
6 4 1.80
7 10 1.95
11 9 2.05

Items 5 and 3 are joined to create a new cluster, which is given the item number of 7.
Items 2 and 1 are joined to create a cluster with item number 8. The process continues
until all items have been joined together. A graphical representation is shown below
(for clarity the last cluster, between items 9 and 11, has been omitted):

]
4
|
:—
2
1
d
0 1 2 3 4 & &
X

Figure 3-17: Graphical Representation of Hierarchical Clustering

IDL Reference Guide CLUSTER_TREE

278 Chapter 3: Procedures and Functions

Version History

6.1 I ntroduced

See Also

DENDRO_PLOT, DENDROGRAM, DISTANCE_MEASURE

CLUSTER_TREE IDL Reference Guide

Chapter 3: Procedures and Functions 279

CMYK_CONVERT

The CMYK_CONVERT procedure converts from the CMYK (cyan-magenta-
yellow-black) color model to RGB (red-green-blue) and vice versa.

The procedure uses the following method to convert from CMYK to RGB:
R=(255-C) (1-K/255)
G =(255- M) (1- K/255)
B =(255-Y) (1 - K/255)
To convert from RGB to CMY K, the procedure uses the following method:
K =minimum of (R, G, B)
C=255[1-R/(255-K)] (if K=255 then C=0)
M =255[1- G/(255 - K)] (if K=255 then M=0)
Y =255[1- B/(255 - K)] (if K=255 then Y=0)
In both casesthe CMYK and RGB values are assumed to be in the range 0 to 255.

Note
Thereisno single method that is used for CMY K/RGB conversion. The method
used by CMYK_CONVERT isthe simplest and, depending on printing inks and
screen colors, might not be optimal in all situations.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cnyk_convert. prointhel i b subdirectory of the IDL distribution.

Syntax
CMYK_CONVERT, C, M, Y, K,R, G, B[, /TO_CMYK]
Arguments
C,M Y, K
To convert from CMYK to RGB, set these arguments to scalars or arrays containing
the CMYK valuesin the range 0-255. To convert from RGB to CMYK (with the

TO_CMYK keyword set), set these arguments to named variables that will contain
the converted values.

IDL Reference Guide CMYK_CONVERT

280 Chapter 3: Procedures and Functions

R,G,B

To convert from CMYK to RGB, set these arguments to named variables that will
contain the converted values. To convert from RGB to CMYK (withthe TO_ CMYK
keyword set), set these arguments to scalars or arrays containing the RGB values.

Keywords

TO_CMYK

If this keyword is set, the values contained in the RGB arguments are converted to
CMYK. The default isto convert from CMYK to RGB.

Example

This example converts an image file s RGB datato CM YK, displays the image using
different color tables, converts CMY K back to RGB, and displays the image again.

file = FILEPATH('rose.jpg', SUBDI RECTORY=['exanples', 'data'])
READ JPEG, file, image

red = REFORM i mage[O0, *,*])

green = REFORM image[1,*,*])

blue = REFORM inmage[2,*,*])

Convert from RGB to CMYK
CMYK_CONVERT, ¢, m vy, k, red, green, blue, /TO CWrK

Di spl ay using cyan (green + blue) color table
I I MAGE, CGREEN=c, BLUE=c, VIEWGRID=[2, 3], DI M[600, 800]
Di spl ay using magenta (red + blue) color table
I MAGE, RED=m BLUE=m [/ VI EW NEXT
Di splay using yellow (red + green) color table
I | MAGE, RED=y, GREEN=y, /VIEW NEXT
Di splay using inverted grayscale (like ink)
|| MAGE, 255b-k, /VIEW NEXT

Convert from CMYK back to RGB
CMYK_CONVERT, ¢, m vy, k, r, g, b
|1 MAGE, inmage, /VIEW NEXT
I 1 MAGE, RED=r, GREEN=g, BLUE=b, /VI EW NEXT

Version History

6.2 Introduced

CMYK_CONVERT IDL Reference Guide

Chapter 3: Procedures and Functions 281

See Also

COLOR _CONVERT

IDL Reference Guide CMYK_CONVERT

282 Chapter 3: Procedures and Functions

COLOR_CONVERT

The COLOR_CONVERT procedure converts colors to and from the RGB (Red
Green Blue), HL S (Hue Lightness Saturation), and HSV (Hue Saturation Value)
color systems. A keyword parameter indicates the type of conversion to be performed
(one of the keywords must be specified). The first three parameters contain the input
color triple(s) which may be scalars or arrays of the same size. The result is returned
in the last three parameters, O, O4, and O,. RGB values are bytesin the range 0 to
255.

Hue is measured in degrees, from 0 to 360. Saturation, Lightness, and Value are
floating-point numbersin the range 0 to 1. A Hue of O degreesisthe color red. Green
is 120 degrees. Blueis 240 degrees. A reference containing a discussion of the
various color systemsis. Foley and Van Dam, Fundamentals of I nteractive Computer
Graphics, Addison-Wesley Publishing Co., 1982.

Syntax

COLOR_CONVERT, lg, I1, I, Og, Oy, O, [, /HLS RGB |, /HSV_RGB [,
/RGB_HLS|, /RGB_HSV]

Arguments

lo, 11, I

Theinput color triple(s). These arguments may be either scalars or arrays of the same
length.

Oo, Ol’ 02

The variables to receive the result. Their structure is copied from the input
parameters.

Keywords
HLS RGB
Set this keyword to convert from HLS to RGB.

HSV_RGB

Set this keyword to convert from HSV to RGB.

COLOR_CONVERT IDL Reference Guide

Chapter 3: Procedures and Functions 283

RGB_HLS

Set this keyword to convert from RGB to HLS.
RGB_HSV

Set this keyword to convert from RGB to HSV.

Examples

The command:
COLOR_CONVERT, 255, 255, 0, h, s, v, /RGB_HSV

convertsthe RGB color triple (255, 255, 0), which isthe color yellow at full intensity
and saturation, to the HSV system. The resulting huein the variable his 60.0 degrees.
The saturation and value, sand v, are set to 1.0.

Version History

Pre4.0 Introduced

See Also

CMYK_CONVERT, HLS, HSV

IDL Reference Guide COLOR_CONVERT

284 Chapter 3: Procedures and Functions

COLOR _QUAN

The COLOR_QUAN function quantizes a TrueColor image and returns a pseudo-
color image and palette to display the image on standard pseudo-color displays. The
output image and palette can have from 2 to 256 colors.

COLOR_QUAN solvesthe general problem of accurately displaying decomposed,
TrueColor images, that contain a palette of up to 224 colors, on pseudo-color displays
that can only display 256 (or fewer) simultaneous colors.

Using COLOR_QUAN

One of two color quantization methods can be used:

e Method 1 isastatistical method that attemptsto find the N colors that most
accurately represent the original color distribution. This algorithm uses a
variation of the Median Cut Algorithm, described in “Color Image
Quantization for Frame Buffer Display”, from Computer Graphics, Volume
16, Number 3 (July, 1982), Page 297. It repeatedly subdivides the color space
into smaller and smaller rectangular boxes, until the requested number of
colors are obtained.

The original colors are then mapped to the nearest output color, and the
original image is resampled to the new palette with optional Floyd-Steinberg
color dithering. The resulting pseudo-color image and palette are usually a
good approximation of the original image.

The number of colorsin the output palette defaults to the number of colors
supported by the currently-selected graphics output device. The number of
colors can aso be specified by the COLOR keyword parameter.

* Method 2, selected by setting the keyword parameter CUBE, divides the three-
dimensional color space into equal-volume cubes. Each color axisis divided
into CUBE segments, resulting in CUBES volumes. The original input image
is sampled to this color space using Floyd-Steinberg dithering, which
distributes the quantization error to adjacent pixels.

The CUBE method has the advantage that the color tables it produces are
independent of the input image, so that multiple quantized images can be
viewed simultaneously. The statistical method usually provides a better-
looking result and a smaller global error.

COLOR_QUAN can use the same color mapping for a series of images. See the
descriptions of the GET_TRANSLATION, MAP_ALL, and TRANSLATION
keywords, below.

COLOR_QUAN IDL Reference Guide

Chapter 3: Procedures and Functions 285

Syntax

Result = COLOR_QUAN(Image R, Image G, Image B, R, G, B)
or
Result = COLOR_QUAN(Image, Dim, R, G, B)

Keywords: [, COLORS=integer{2 to 256}] [, CUBE={2|3|4|5|6} |,
GET_TRANSLATION=variable[,/MAP_ALL]] [, /DITHER]
[, ERROR=variable] [, TRANSLATION=vector]

The input image parameter can be passed as either three, separate col or-component
arrays (Image R, Image_G, Image B) or as athree-dimensional array containing all
three components, Image, and a scalar, Dim, indicating the dimension over which the
colors are interleaved.

Return Value

Returns a pseudo-color image composed of 2 to 256 colors.
Arguments

Image R, Image G, Image B

Arrays containing the red, green, and blue components of the decomposed TrueColor
image. For best results, the input image(s) should be scaled to the range of 0 to 255.

Image
A three-dimensional array containing all three components of the TrueColor image.
Dim

A scalar that indicates the method of color interleaving in the Image parameter. A
value of 1 indicatesinterleaving by pixel: (3, n, m). A value of 2 indicates
interleaving by row: (n, 3, m). A value of 3 indicates interleaving by image: (n, m, 3).

R,G,B

Three output byte arrays containing the red, green, and blue components of the output
palette.

IDL Reference Guide COLOR_QUAN

286 Chapter 3: Procedures and Functions

Keywords
COLORS

The number of colorsin the output palette. This value must be at least 2 and not
greater than 256. The default is the number of colors supported by the current
graphics output device.

CUBE

If this keyword is set, the color space is divided into CUBES volumes, to which the
input image is quantized. This result is always Floyd-Steinberg dithered. The value of
CUBE can range from 2 to 6; providing from 23 =8, to 6% = 216 output colors. If this
keyword is set, the COLORS, DITHER, and ERROR keywords are ignored.

DITHER

Set this keyword to dither the output image. Dithering can improve the appearance of
the output image, especially when using relatively few colors.

ERROR

Set this optional keyword to a named variable. A measure of the quantization error is
returned. Thiserror is proportiona to the square of the Euclidean distance, in RGB
space, between corresponding colors in the origina and output images.

GET_TRANSLATION

Set this keyword to a named variable in which the mapping between the original
RGB triples (in the TrueColor image) and the resulting pseudo-color indicesis
returned as a vector. Do not use this keyword if CUBE is set.

MAP_ALL

Set this keyword to establish a mapping for al possible RGB triples into pseudo-
color indices. Set this keyword only if GET_TRANSLATION is also present. Note
that mapping al possible colors requires more compute time and dlightly degrades
the quality of the resultant color matching.

TRANSLATION

Set this keyword to avector of tranglation indices obtained by a previous call to
COLOR_QUAN using the GET_TRANSLATION keyword. The resulting imageis
quantized using this vector.

COLOR_QUAN IDL Reference Guide

Chapter 3: Procedures and Functions 287

Examples

The following code segment reads a TrueColor, row interleaved, image from a disk
file, and displays it on the current graphics display, using a palette of 128 colors:

; Open an input file:
OPENR, unit, 'XXX DAT', /GET_LUN

; Di mensi ons of the input inage:
a = BYTARR(512, 3, 480)

; Read the inmge:
READU, unit, a

:Close the file:
FREE LUN, unit

; Show the quantized image. The 2 indicates that the colors are
;interl eaved by row
TV, COLOR_QUAN(a, 2, r, g, b, CO.ORS=128)

; Load the new pal ette:
TVLCT, r, g, b

To quantize the image into 216 equal-volume color cubes, replace the call to
COLOR_QUAN with the following:

TV, COLOR_ QUAN(a, 2, r, g, b, CUBE=6)
Converting RGB Images to Indexed Images

Although it isarelatively ssmple process to convert an RGB image to a grayscale
image, the process needed to convert an RGB image to an indexed image is more
complex. This process is more complex because the millions of possible colors
provided by an RGB image must be decomposed into the 256 colors used by an
indexed image. IDL's COLOR_QUAN function may be used to perform this process.

The following exampl e shows how to use the COLOR_QUAN function to convert an
RGB imageto anindexed image. Theel ev_t . j pg file contains a pixel interleaved
RGB image, which hasits own color information. This example converts theimage
to an indexed image with an associated color table. Complete the following steps for
adetailed description of the process.

Example Code
Seer gbt oi ndexed. pr o intheexanpl es/ doc/ i rage subdirectory of the IDL
installation directory for code that duplicates this example.

IDL Reference Guide COLOR_QUAN

RSI_PROCODE/examples/doc/image/rgbtoindexed.pro

288

COLOR_QUAN

Chapter 3: Procedures and Functions

Determine the pathto theel ev_t . j pg file:

elev_tFile = FILEPATH('elev_t.jpg', $
SUBDI RECTORY = ['exanples', 'data'])

Import the image fromtheel ev_t . j pg fileinto IDL:
READ JPEG elev_tFile, elev_tlmge
Determine the size of the imported image:
elev_tSize = Sl ZE(el ev_t 1 mage, /DI MENSI ONS)

If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to one before your first RGB imageis
displayed within an IDL session or program.

DEVI CE, DECOMPCSED = 1
Initialize the display:

WNDOW 0, TITLE = 'elev_t.jpg', $
XSIZE = elev_tSize[1l], YSIZE = elev_tSize[2]

Display the imported image:
TV, elev_tlmge, TRUE = 1
The following figure shows the original RGB image.

Figure 3-18: Example of an RGB Image

IDL Reference Guide

Chapter 3: Procedures and Functions 289

Note
If you arerunning IDL on a PseudoColor display, the RGB image will not be
displayed correctly. A PseudoColor display only allows the display of
indexed images. You can change the RGB image to an indexed image with
the COLOR_QUAN routine. An example of this method is shown in this
section.

The RGB image is converted to an indexed image with the COLOR_QUAN
routine, but the DECOMPOSED keyword to the DEVICE command must be
set to zero (for TrueColor displays) before using COLOR_QUAN becauseitis
acolor table related routine. See COLOR_QUAN for more information.

Note
COLOR_QUAN may result in some loss of color information since it
quantizes the image to a fixed number of colors (stored in the color table).

7. If you arerunning IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program.

DEVI CE, DECOVPOSED = 0
8. Convert the RGB image to an indexed image with an associated color table:

i mgel ndexed = COLOR_QUAN(el ev_tlnmage, 1, red, green, $
bl ue)

9. Export the resulting indexed image and its associated color tableto a PNG file:
WRI TE_PNG, 'elev_t.png', inmagelndexed, red, green, blue

Version History

Pre4.0 Introduced

See Also

PSEUDO

IDL Reference Guide COLOR_QUAN

290 Chapter 3: Procedures and Functions

COLORMAP_APPLICABLE

The COLORMAP_APPLICABLE function determines whether the current visual
class supports the use of a colormap, and if so, whether colormap changes affect pre-
displayed Direct Graphics or if the graphics must be redrawn to pick up colormap
changes.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
col or map_appl i cabl e. pro inthel i b subdirectory of the IDL distribution.

Syntax
Result = COLORMAP_APPLICABLE(redrawRequired)

Return Value

The function returns along value of 1 if the current visual class allows modification
of the color table, and O otherwise.

Arguments

redrawRequired

A named variable to retrieve avalue indicating whether the visual class supports
automatic updating of graphics. The value is 0 if the graphics are updated
automaticaly, or 1 if the graphics must be redrawn to pick up changes to the
colormap.

Keywords
None.

Examples

To determine whether to redisplay an image after a colormap change:

result = COLORMAP_APPLI CABLE(r edr anRequi r ed)

IF ((result GI 0) AND (redrawRequired GI 0)) THEN BEG N
my_redraw

ENDI F

COLORMAP_APPLICABLE IDL Reference Guide

Chapter 3: Procedures and Functions 291

Version History

52 I ntroduced

IDL Reference Guide COLORMAP_APPLICABLE

292 Chapter 3: Procedures and Functions

COMFIT

The COMFIT function fits the paired data{xi, yi} to one of six common types of
approximating models using a gradient-expansion |east-squares method.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
confit.prointhelib subdirectory of the IDL distribution.

Syntax

Result = COMFIT(X, Y, A[, /EXPONENTIAL |,/GEOMETRIC |, /GOMPERTZ |,
/HYPERBOLIC |, /LOGISTIC |, /[LOGSQUARE] [, SIGMA=variabl€]
[, WEIGHTS=vector] [, YFIT=variable])

Return Value
Results in a vector containing the model parameters ag, a4, ay, €tc.
Arguments

X

An n-element integer, single-, or double-precision floating-point vector.

Y

An n-element integer, single-, or double-precision floating-point vector.

A

A vector of initial estimates for each model parameter. The length of this vector
depends upon the type of model selected.

Keywords

Note
One of the following keywords specifying a type of model must be set when using

COMPFIT. If you do not specify amodel, IDL will display awarning message when
COMFIT iscalled.

COMFIT IDL Reference Guide

Chapter 3: Procedures and Functions 293

EXPONENTIAL
Set this keyword to compute the parameters of the exponential model.

— X
Yy =yt

GEOMETRIC
Set this keyword to compute the parameters of the geometric model.
y = apx*+a
GOMPERTZ

Set this keyword to compute the parameters of the Gompertz model.

—_ X
y = a*" tag

HYPERBOLIC
Set this keyword to compute the parameters of the hyperbolic model.
1
y =
ag + X
LOGISTIC
Set this keyword to compute the parameters of the logistic model.
-1
8o + 3,

LOGSQUARE

Set this keyword to compute the parameters of the logsquare model.
y = ay+a,log(x) + a,log(x)?

SIGMA

Set this keyword to a named variable that will contain a vector of standard deviations
for the computed model parameters.

IDL Reference Guide COMFIT

294 Chapter 3: Procedures and Functions

WEIGHTS

Set this keyword equal to a vector of weightsfor Y. This vector should be the same
length as X and Y. The error for each term is weighted by WEIGHTS; when
computing the fit. Frequently, WEIGHTS; = 1.O/Gi2, where ¢ is the measurement
error or standard deviation of Y; (Gaussian or instrumental weighting), or
WEIGHTS = 1/Y (Poisson or statistical weighting). If WEIGHTS is not specified,
WEIGHTS; is assumed to be 1.0.

YFIT

Set this keyword to a named variable that will contain an n-element vector of y-data
corresponding to the computed model parameters.

Examples

Define two n-el ement vectors of paired data:
X =1 2.27, 15.01, 34.74, 36.01, 43.65, 50.02, 53.84, 58.30, $
62.12, 64.66, 71.66, 79.94, 85.67, 114.95]
Y = [5.16, 22.63, 34.36, 34.92, 37.98, 40.22, 41.46, 42.81, $
43.91, 44.62, 46.44, 48.43, 49.70, 55.31]

Define a 3-elenment vector of initial estimates for the | ogsquare
;. nodel :
A=[1.5 1.5 1.5

; Conpute the nodel paraneters of the |ogsquare nodel, A[0], Al 1],
o & Al 2]:
result = COMFIT(X, Y, A /LOGSQUARE)

The result should be the 3-element vector: [1.42494, 7.21900, 9.18794].

Version History

4.0 I ntroduced

See Also

CURVEFIT, LADFIT, LINFIT, LMFIT, POLY_FIT, SVDFIT, “Curve and Surface
Fitting” in Chapter 12 of the Using IDL manual

COMFIT IDL Reference Guide

Chapter 3: Procedures and Functions 295

COMMAND LINE_ARGS

The COMMAND_LINE_ARGS function returns strings supplied by the user when
IDL was started with the - ar g or - ar gs command line options. If either of these
optionsis specified at the command line when IDL is started, IDL saves them without
examining their values or attaching any special meaning to them.

Note
The shell performsits normal interpretation of wildcards and shell metacharacters
before the values of the - ar g or - ar gs command line options are passed to IDL.

Strings specified at the command line can be retrieved at any time within the IDL
session viathe COMMAND_LINE_ARGS function. This mechanism can be used to
pass specia application-defined values to a program written in the IDL language.

Syntax
Result = COMMAND_LINE_ARGS([, COUNT=variable])

Return Value
If any - ar g or - ar gs options were specified at the command line when IDL was
started, COMMAND_LINE_ARGS returns a string array containing the specified
values, one value per element. The values are returned in the order specified by the

user on the command line. If no such options were specified, aNULL scalar string is
returned.

Keywords
COUNT

Set this keyword equal to a named variable that will contain the number of retrieved
arguments. If no arguments were specified, the variable will contain 0.

Version History

6.2 Introduced

IDL Reference Guide COMMAND_LINE_ARGS

296 Chapter 3: Procedures and Functions

See Also

“Command Line Options for IDL Startup” in Chapter 1 of the Using IDL manual

COMMAND_LINE_ARGS IDL Reference Guide

Chapter 3: Procedures and Functions 297

COMMON

The COMMON statement creates or references a common block. Common blocks
are useful when there are variables that need to be accessed by several IDL
procedures or when the value of avariable within a procedure must be preserved
across cals. Once a common block has been defined, any program unit referencing
that common block can access variablesin the block as though they were local
variables. Variables in a common statement have a global scope within procedures
defining the same common block. Unlikelocal variables, variablesin common blocks
are not destroyed when a procedure is exited.

There are two types of common block statements: definition statements and reference
statements. See the Examples section for details.

Note on Common Block Variable Names

Variablesin IDL COMMON blocks do not actually have names. Rather, IDL
represents COMMON blocks internally as an array of variables, and these variables
are referenced by their positional index. Hence, the first variable is at position 0, the
second at position 1, and so forth. When you specify a COMMON block declaration
inan IDL routine, you specify names to be used for these variables within the scope
of that routine.

The first routine in which a COMMON block is defined is remembered by IDL as
part of the state of that block. When another routine defines the same COMMON
block, it is allowed to omit the variable names. In this case, IDL uses the same names
used in the original defining routine. Since good programming practice dictates that
the same names be used everywhere, this result usually causes no confusion.
However, different routines are allowed to use entirely different namesto refer to a
given variable. For example, the DIV routine above could have been written like this:

PRO DI V2, D
COWON SHAREZ2, X, Y, Z
D=X/Y
PRINT, D, X Y, Z
RETURN

END

In this scenario, the variable referred to by the name E in the MULT routineis
referred to by the name X in the DIV 2 routine. Similarly, the variable name F is
replaced by Y, and the name G isreplaced by Z. Note that only the names by which
the variables are called has changed — the underlying variables are the same. While
thistype of COMMON block referenceislegal, it can quickly become confusing, and
most programmers use the same names in every case.

IDL Reference Guide COMMON

298

Chapter 3: Procedures and Functions

Syntax

COMMON Block_Name, Variabley, ..., Variable,

Examples

Common Block Definition Statements

COMMON

The common block definition statement creates acommon block with the designated
name and places the variables whose names follow into that block. Variables defined
in acommon block can be referenced by any program unit that declares that common
block. The general form of the COMMON block definition statement is as follows:

COMWDN Bl ock_Nane, Variable;, Variable,, ..., Variable,

The number of variables appearing in the common block cannot change after the
common block has been defined. The first program unit (main program, function, or
procedure) to define the common block sets the number of included variables; other
program units can reference the common block with any number of variables up to
the number originally specified. Different program units can give the variables
different names, as shown in the example below.

Common blocks share the same space for al procedures. In IDL, common block
variables are matched variable to variable, unlike FORTRAN, where storage
locations are matched. The third variablein agiven IDL common block will always
bethe same asthethird variablein all declarations of the common block regardless of
the size, type, or structure of the preceding variables.

Note that common blocks must appear before any of the variables they define are
referenced in the procedure.

Variables in common blocks can be of any type and can be used in the same manner
as normal variables. Variables appearing as parameters cannot be used in common
blocks. There are no restrictions on the number of common blocks used, although
each common block uses dynamic memory.

Example

The two procedures in the following example show how variables defined in
common blocks are shared.

PRO ADD, A
COWON SHAREL, X, Y, Z, Q R
A=X+Y+Z+Q+R
PRINT, X, Y, Z, Q R A
RETURN

IDL Reference Guide

Chapter 3: Procedures and Functions 299

END

PRO SUB, T
COWON SHAREL, A, B, C D
T=A-B-C-D
PRINT, A B, C D T
RETURN

END

Thevariables X, Y, Z, and Q in the procedure ADD are the same asthe variables A,
B, C, and D, respectively, in procedure SUB. The variable R in ADD is not used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an error
would occur when the COMMON definition in ADD was compiled. Thisis because
SUB has aready declared the size of the COMMON block, SHAREL, which cannot
be extended.

Common Block Reference Statements

The common block reference statement duplicatesthe COMMON block and variable
names from a previous definition. The COMMON block need only be defined in the
first routine to be compiled that references the block.

Example

The two proceduresin the following example share the COMMON block SHARE2
and all itsvariables.

PRO MULT, M
COMWON SHARE2, E, F, G
M=E* F* G
PRINT, M E F, G
RETURN

END

PROD YV, D
COVMON SHARE2
D=E/ F
PRINT, D, E F, G
RETURN

END

The MULT procedure uses acommon block definition statement to define the block
SHARE2. The DIV procedure then usesa COMMON block reference statement to
gain accessto al the variables defined in SHAREZ2. (Note that MULT must be
defined before DIV in order for the COMMON block reference to succeed.)

IDL Reference Guide COMMON

300 Chapter 3: Procedures and Functions

Version History

Origind Introduced

COMMON IDL Reference Guide

Chapter 3: Procedures and Functions 301

COMPILE_OPT

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears.

RSI recommends the use of
COVPI LE_OPT 1 DL2

in al new code intended for usein areusable library. We further recommend the use
of

COWPI LE_OPT idl 2, H DDEN

in all such routines that are not intended to be called directly by regular users (e.g.
helper routines that are part of alarger package).

Syntax
COMPILE_OPT opt, [, opty, ..., opty]

Arguments

opt,
This argument can be any of the following:
e |IDL2— A shorthand way of saying:
COWPI LE_OPT DEFINT32, STRI CTARR

« DEFINT32 — IDL should assume that lexical integer constants default to the
32-bit type rather than the usual default of 16-bit integers. This takes effect
from the point where the COMPILE_OPT statement appears in the routine
being compiled and remainsin effect until the end of the routine. The
following table illustrates how the DEFINT32 argument changes the
interpretation of integer constants.

IDL Reference Guide COMPILE_OPT

302

COMPILE_OPT

Chapter 3: Procedures and Functions

Constant Normal Type DEFINT32 Type
Without type specifier:
42 INT LONG
'2a' x INT LONG
42u UINT ULONG
'2a' xu UINT ULONG
With type specifier:
0b BYTE BYTE
Os INT INT
0l LONG LONG
42.0 FLOAT FLOAT
42d DOUBLE DOUBLE
42us UINT UINT
42ul ULONG ULONG
4211 LONG64 LONG64
42ul | ULONG64 ULONG64

Table 3-5: Examples of the Effect of the DEFINT32 Argument

HIDDEN — This routine should not be displayed by HEL P, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines

that regular IDL users are not interested in seeing.

A side-effect of making aroutine hidden is that IDL will not print a“Compile
module” message for it when it is compiled from the library to satisfy a call to
it. This makes hidden routines appear built-in to the user.

LOGICAL_PREDICATE — When running this routine, from the point
where the COMPILE_OPT statement appears until the end of the routine, treat
any non-zero or non-NULL predicate value as “true,” and any zero or NULL

predicate value as “false.”

IDL Reference Guide

Chapter 3: Procedures and Functions 303

Background

A predicate expression is an expression that is evaluated as being “true” or
“false” as part of a statement that controls program execution. IDL evaluates
such expressions in the following contexts:

e |F...THEN. .. ELSE statements
e ? : inline conditional expressions
e VHI LE. .. DOstatements

e REPEAT. .. UNTI L statements

« when evaluating the result from an INIT function method to determineif a
call to OBJ NEW successfully created a new object

By default, IDL usesthe following rulesto determine whether an expressionis
true or false:

* Integer — Aninteger is considered trueif itsleast significant bitis 1, and
false otherwise. Hence, odd integers are true and even integers (including
zero) are false. Thisinterpretation of integer truth values is sometimes
referred to as “bitwise,” reflecting the fact that the value of the least
significant bit determines the result.

e Other — Non-integer numeric types are true if they are non-zero, and
false otherwise. String and heap variables (pointers and object references)
aretrueif they are non-NULL, and false otherwise.

The LOGICAL_PREDICATE option atersthe way IDL evaluates predicate
expressions. When LOGICAL_PREDICATE is set for aroutine, IDL usesthe
following rules to determine whether an expression istrue or false:

* Numeric Types— A number is considered trueiif its value is non-zero,
and false otherwise.

e Other Types— Strings and heap variables (pointers and object
references) are considered true if they are non-NULL, or false otherwise.

Note on the NOT Operator

When using the LOGICAL_PREDICATE compile option, you must be aware
of the fact that applying the IDL NOT operator to integer data computes a
bitwise negation (1's complement), and is generally not applicable for usein
logical computations. Consider the common construction:

WHI LE (NOT EOF(1un)) DO BEG N

ENDVWHI LE

IDL Reference Guide COMPILE_OPT

304

Note

Chapter 3: Procedures and Functions

The EOF function returns 0 while the file specified by LUN has data |eft, and
returns 1 when hits the end of file. However, the expression “NOT 1" hasthe
numeric value -2. When the LOGICAL_PREDICATE option isnot in use, the
WHILE statement sees-2 asfalse; if the LOGICAL_PREDICATE isin use, -2
isatrue value and the above loop will not terminate as desired.

The proper way to write the above loop uses the ~ logical negation operator:
WH LE (~ EOF(lun)) DO BEG N
ENDWHI LE
It isworth noting that this version will work properly whether or not the
LOGICAL_PREDICATE compile option isin use. Logical negation

operations should always use the ~ operator in preference to the NOT operator,
reserving NOT exclusively for bitwise computations.

* OBSOLETE — If the user has!'WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages that
thisroutine is obsolete. This directive can be used to warn people that there
may be better waysto perform the desired task.

e STRICTARR — While compiling this routine, IDL will not alow the use of
parentheses to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good ideafor library functions.

Use of STRICTARR can eliminate many uses of the FORWARD_FUNCTION
definition.

STRICTARR has no effect on the use of parentheses to reference structure tags
using the tag index, which is not an array indexing operation. For example, no
syntax error will occur when compiling the following code:

COWP| LE_OPT STRI CTARR
mystruct = {a: 0, b:1}
byi ndex_0 = nystruct. (0)

For more on referencing structure tags by index, see “Advanced Structure Usage” in
Chapter 16 of the Building IDL Applications manual.

COMPILE_OPT IDL Reference Guide

Chapter 3: Procedures and Functions 305

e STRICTARRSUBS— When IDL subscripts one array using another array as
the source of array indices, the default behavior isto clip any out-of-range
indices into range and then quietly use the resulting data without error. This
behavior is described in “Understanding Array Subscripts’ in Chapter 15 of
the Building IDL Applications manual. Specifying STRICTARRSUBS will
instead cause IDL to treat such out-of-range array subscripts within the body of
the routine containing the COMPILE_OPT statement as an error. The position
of the STRICTARRSUBS option within the module is not important: All
subscripting operations within the entire body of the specified routine will be
treated this way.

Version History

53 Introduced
5.6 Added STRICTARRSUBS option
6.0 Added LOGICAL_PREDICATE option

IDL Reference Guide COMPILE_OPT

306 Chapter 3: Procedures and Functions

COMPLEX

The COMPLEX function returns complex scalars or arrays given one or two scalars
or arrays.

Syntax

Result = COMPLEX(Real [, Imaginary] [, /DOUBLE])

or
Result = COMPLEX (Expression, Offset, Dy [, ..., Dg] [, /DOUBLE])

Return Value

Returns a single-precision complex value or array given one or two scalars or arrays.
If only one parameter is supplied, the imaginary part of the result is zero, otherwise it
is set to the value of the Imaginary parameter. If either or both of the parameters are
arrays, the result is an array, following the same rules as standard IDL operators. If
three or more parameters are supplied, COMPLEX extracts fields of data from

Expression.
Arguments

Real

Scalar or array to be used as the real part of the complex result.
Imaginary

Scalar or array to be used as the imaginary part of the complex result.
Expression

The expression from which datais to be extracted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as complex data. See the
description in Chapter 13, “Working with Datain IDL” in the Building IDL
Applications manual for details.

COMPLEX IDL Reference Guide

Chapter 3: Procedures and Functions 307
Di

When extracting fields of data, the D; arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The D; arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If asingle argument is specified, it can be either a scalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from astring argument, it is possibl e that the string does not contain
avalid floating-point value and no conversion is possible. The default action in such

casesisto print awarning message and return 0. The ON_IOERROR procedure can

be used to establish a statement to be jumped to in case of such errors.

Keywords

DOUBLE

Set this keyword to return a double-precision complex result. Setting this keyword is
equivalent to using the DCOMPLEX function, and is provided as a programming
convenience.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Create acomplex array from two integer arrays by entering the following commands:

; Create the first integer array:
A=11,2,3]

; Create the second integer array:
B =1[4,5,6]

IDL Reference Guide COMPLEX

308 Chapter 3: Procedures and Functions

Make A the real parts and B the inmaginary parts of the new
; conplex array:
C = COWPLEX(A, B)

; See how the two arrays were conbi ned:
PRINT, C
IDL prints:

(1.00000, 4.00000)(2.00000, 5.00000)
(3.00000, 6.00000)

Therea and imaginary parts of the complex array can be extracted as follows:

Print the real part of the conplex array C
PRINT, 'Real Part: ', REAL_PART(CQ)

Print the imaginary part of the conplex array C
PRI NT, 'Imaginary Part: ', | MAG NARY(C)

IDL prints:

Real Part: 1.00000 2.00000 3.00000
| magi nary Part: 4.00000 5. 00000 6. 00000

Version History

Original Introduced

See Also

BYTE, CONJ, DCOMPLEX, DOUBLE, FIX, FLOAT, IMAGINARY, LONG,
LONG64, REAL_PART, STRING, UINT, ULONG, ULONG64

COMPLEX IDL Reference Guide

Chapter 3: Procedures and Functions 309

COMPLEXARR

The COMPLEXARR function returns a complex, single-precision, floating-point
vector or array.

Syntax
Result = COMPLEXARR(D], ..., Dg] [, /NOZERQ])
Return Value

Returns a complex, single-precision, floating-point vector or array.
Arguments
D

Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, COMPLEXARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed, and COMPLEXARR executes faster.

Examples

To create an empty, 5-element by 5-element, complex array C, enter:
C = COWPLEXARR(5, 5)

Version History

Original Introduced

IDL Reference Guide COMPLEXARR

310 Chapter 3: Procedures and Functions

See Also

DBLARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULONG64ARR, ULONARR

COMPLEXARR IDL Reference Guide

Chapter 3: Procedures and Functions 311

COMPLEXROUND

The COMPLEXROUND function rounds real and imaginary components of a
complex array.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
conpl exround. pro inthel i b subdirectory of the IDL distribution.

Syntax
Result = COMPLEXROUND(Input)
Return Value

Returns the result of rounding the real and imaginary components of the input array.
If the array is double-precision complex, then the result is also double-precision
complex.

Arguments

Input

The complex array to be rounded.
Keywords
None.

Examples

X = [COMPLEX(1.245, 3.88), COMPLEX(9.1, 0.3345)]
PRI NT, COVPLEXROUND(X)

IDL prints:
(1.00000, 4.00000)(9.00000, 0.00000)

Version History

Pre4.0 Introduced

IDL Reference Guide COMPLEXROUND

312 Chapter 3: Procedures and Functions

See Also

ROUND

COMPLEXROUND IDL Reference Guide

Chapter 3: Procedures and Functions 313

COMPUTE_MESH_NORMALS

The COMPUTE_MESH_NORMALS function computes normal vectors for a set of
polygons described by the input array.

Syntax
Result = COMPUTE_MESH_NORMALS(fVerts], iConn])
Return Value
Returnsa 3 x M array containing a unit normal for each vertex in the input array.
Arguments
fVerts
A 3 x M array of vertices.

iConn

A connectivity array (see the POLY GONS keyword to IDLgrPolygon::Init). If no
iConn array is provided, it is assumed that the vertices in fVerts constitute asingle

polygon.
Keywords

None.

Version History

51 Introduced

IDL Reference Guide COMPUTE_MESH_NORMALS

314 Chapter 3: Procedures and Functions

COND

The COND function returns the condition number of area or complex two-
dimensional array A.

By default, COND usesthe L, norm to compute the condition number. You may use
the LNORM keyword to specify theL 4, L, or L, norm.

For the L, and L, norms, the condition number is computed from
NORM(A)-NORM(INVERT(A)). If theinverse of A isinvalid (due to the singularity
of A or floating-point errorsin the INVERT function), COND returns -1.

For the L, norm, the condition number is defined as the ratio of the largest singular
value to the smallest. The singular values are computed using LA_SVD.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cond. prointhel i b subdirectory of the IDL distribution.

Syntax
Result = COND(A[,/DOUBLE] [, LNORM={0]|1]2}])
Return Value
Returns the condition number of an n by n real or complex array A by explicitly
computing NORM(A)-NORM(A™). If Atisinvalid (due to the singularity of A or
floating-point errorsin the INVERT function), COND returns - 1.
Arguments

A

The two-dimensional array. For LNORM = 0 or 1, the array A must be a square and
can be either real or complex. For LNORM = 2, the array A may be rectangular and
can only bereal.

Keywords
DOUBLE

Set this keyword to force the result to be returned as double-precision. The default is
toreturn asingle-precision result if theinput is single precision, or adouble-precision

COND IDL Reference Guide

Chapter 3: Procedures and Functions

315

result otherwise. Internally, IDL performs all computations using double-precision

arithmetic.
LNORM

Set this keyword to an integer value to indicate which norm to use for the
computation. The possible values of this keyword are:

Value Description
0 Usethe L, norm (the maximum absol ute row sum norm). This
isthe default.
1 Use the L1 norm (the maximum absol ute column sum norm).
2 Use the L, norm (the spectral norm).

Table 3-6: LNORM Keyword Values

Examples

Define a conplex array A
A = [[COWPLEX(1, 0), COWPLEX(2,-2), COMPLEX(-3, 1)]., $
[COWPLEX(1,-2), COMPLEX(2, 2), COWPLEX(1l, 0)], $
[COWPLEX(1, 1), COWMPLEX(0, 1), COWPLEX(1l, 5)]1]

; Compute the condition nunber of the array using internal
; doubl e-precision arithnetic:
PRI NT, COND(A, / DOUBLE)

IDL prints:
5.93773

Version History

Pre4.0 Introduced

See Also

DETERM, INVERT, NORM, LA_SVD

IDL Reference Guide

COND

316 Chapter 3: Procedures and Functions

CONGRID

The CONGRID function shrinks or expands the size of an array by an arbitrary
amount. CONGRID issimilar to REBIN in that it can resize a one, two, or three
dimensional array, but where REBIN requires that the new array size must be an
integer multiple of the original size, CONGRID will resize an array to any arbitrary
size. (REBIN is somewhat faster, however.) REBIN averages multiple points when
shrinking an array, while CONGRID just resamples the array.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
congri d. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = CONGRID(Array, X, Y, Z[, /CENTER] [, CUBIC=value{-1 to 0}]
[, INTERP] [, /MINUS_ONE])

Return Value

Returns the resized array. The returned array has the same number of dimensions as
the original array and is of the same data type.

Arguments

Array

A 1-, 2-, or 3-dimensional array to resize. Array can be any type except string or
structure.

X

The new X-dimension of the resized array. X must be an integer or along integer, and
must be greater than or equal to 2.

Y

The new Y-dimension of theresized array. If the original array has only 1 dimension,
Yisignored. If the original array has 2 or 3 dimensions Y MUST be present.

CONGRID IDL Reference Guide

Chapter 3: Procedures and Functions 317

Z

The new Z-dimension of the resized array. If the original array hasonly 1 or 2
dimensions, Z isignored. If the original array has 3 dimensions then Z MUST be
present.

Keywords

CENTER

Set this keyword to shift the interpolation so that pointsin the input and output arrays
are assumed to lie at the midpoint of their coordinates rather than at their lower-left
corner.

CUBIC

Set this keyword to avalue between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to avalue greater than zero specifies avalue of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.
This keyword has no effect when used with 3-dimensional arrays.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than o, and f is sampled with spacing less than or equal to 1/(2w),
then f can be reconstructed by convolving with a sinc function: sinc(x) = sin(rnx) /

(x).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniquesfor
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

IDL Reference Guide CONGRID

318 Chapter 3: Procedures and Functions

INTERP

Set this keyword to force CONGRID to use linear interpolation when resizing a 1- or
2-dimensional array. CONGRID automatically uses linear interpolation if the input
array is 3-dimensional. When the input array is 1- or 2-dimensional, the default isto
employ nearest-neighbor sampling.

MINUS_ONE

Set this keyword to prevent CONGRID from extrapolating one row or column
beyond the bounds of the input array. For example, if the input array has the
dimensions (i, j) and the output array has the dimensions (X, y), then by default the
array isresampled by afactor of (i/x) in the X direction and (j/y) inthe Y direction. If
MINUS_ONE is set, the array will be resampled by the factors (i-1)/(x-1) and (j-
D/(y-1).

Examples
Givenvol isa3-D array with the dimensions (80, 100, 57), resize it to be a (90, 90,

80) array
vol = CONGRI D(vol, 90, 90, 80)
Note

Also see “Resizing Images’ in Chapter 2 of the Image Processing in IDL manual
for amore extensive example.

Version History

Original Introduced

See Also

REBIN

CONGRID IDL Reference Guide

Chapter 3: Procedures and Functions 319

CONJ

The CONJ function returns the complex conjugate of X. The complex conjugate of
the real-imaginary pair (X, y) is (X, -y). If Xisnot complex, acomplex-valued copy of
Xisused.

Syntax
Result = CONJ(X)
Return Value
Returns the complex conjugate of X.
Arguments
X

The value for which the complex conjugate is desired. If X isan array, the result has
the same structure, with each element containing the complex conjugate of the
corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by ICPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Print the conjugate of the complex pair (4.0, 5.0) by entering:
PRI NT, CONJ(COMPLEX(4.0, 5.0))

IDL prints:
(4.00000, -5.00000)

IDL Reference Guide CONJ

320 Chapter 3: Procedures and Functions

Version History

Origind Introduced

See Also

CINDGEN, COMPLEX, COMPLEXARR, DCINDGEN, DCOMPLEX,
DCOMPLEXARR

CONJ IDL Reference Guide

Chapter 3: Procedures and Functions 321

CONSTRAINED_MIN

The CONSTRAINED_MIN procedure solves nonlinear optimization problems of the
following form:

Minimize or maximize gp(X), subject to:
glb; < gi(X)<gub; fori=0,.nfunsl,i=p
xlbj < Xj £xubj forj=0,..,nvars-1

Xisavector of nvarsvariables, Xg ,....Xpyars1, @d G isavector of nfuns functions
90 »---Onfuns-L, Which all depend on X. Any of these functions may be nonlinear. Any
of the bounds may be infinite and any of the constraints may be absent. If there are no
constraints, the problem is solved as an unconstrained optimization problem. The
program solves problems of thisform by the Generalized Reduced Gradient Method.
See References 1-4.

CONSTRAINED_MIN usesfirst partial derivatives of each function g; with respect
to each variable x;. These are automatically computed by finite difference
approximation (either forward or central differences).

CONSTRAINED_MIN is based on an implementation of the GRG algorithm
supplied by Windward Technologies, Inc. See Reference 11.

Syntax
CONSTRAINED_MIN, X, Xbnd, Gbnd, Nobj, Gcomp, Inform [, EPSTOP=value]
[, LIMSER=value] [, /MAXIMIZE] [, NSTOP=valug] [, REPORT=filenamg]
[, TITLE=string]
Arguments

X

An nvars-element vector. On input, X containsinitial values for the variables. On
output, X contains final values of the variable settings determined by
CONSTRAINED_MIN.

IDL Reference Guide CONSTRAINED_MIN

322

Chapter 3: Procedures and Functions

Xbnd

Bounds on variables. Xbnd is an nvars x 2 element array.
e Xbnd[],0] isthe lower bound for variable x[j].
e Xbnd[j,1] isthe upper bound for variable X[].

¢ Use-1.0e30 to denote no lower bound and 1.0e30 for no upper bound.
Gbnd

Bounds on constraint functions. Gbnd is an nfuns x 2 element array.
e Gbnd[i,0] isthelower bound for function gf[i].
e Gbnd[i,1] isthe upper bound for function g[i].
e use-1.0e30 to denote no lower bound and 1.0e30 for no upper bound.

Bounds on the objective function are ignored; set them to 0.
Nobj

Index of the objective function.
Gcomp

A scalar string specifying the name of a user-supplied IDL function. This function
must accept an nvars-element vector argument X of variable values and return an
nfuns-element vector G of function values.

Inform
Termination status returned from CONSTRAINED_MIN.

Inform value Message

0 Kuhn-Tucker conditions satisfied.
Thisisthe best possible indicator that an optimal point has been
found.

1 Fractional change in objective less than EPSTOP for NSTOP
consecutive iterations. See Keywords below.

Thisis not as good as Inform=0, but still indicates the
likelihood that an optimal point has been found.

Table 3-7: Inform Argument Values

CONSTRAINED_MIN IDL Reference Guide

Chapter 3: Procedures and Functions 323

Inform value Message

2 All remedies have failed to find a better point.
User should check functions and bounds for consistency and,
perhaps, try other starting val ues.

3 Number of completed 1-dimensiona searches exceeded
LIMSER. See Keywords below.

User should check functions and bounds for consistency and,
perhaps, try other starting values. It might help to increase
LIMSER. Use LIMSER=larger_valueto do this.

4 Objective function is unbounded.

CONSTRAINED_MIN has observed dramatic change in the
objective function over severa steps. Thisisagood indication
that the objective function is unbounded. If thisis not the case,
the user should check functions and bounds for consistency.

5 Feasible point not found.

CONSTRAINED_MIN was not able to find afeasible point. If
the problem is believed to be feasible, the user should check
functions and bounds for consistency and perhaps try other
starting val ues.

6 Degeneracy has been encountered.

The point returned may be close to optimal. The user should
check functions and bounds for consistency and perhaps try
other starting values.

7 Noisy and nonsmooth function values. Possible singularity or
error in the function evaluations.
8 Optimization process terminated by user request.
9 Maximum number of function evaluations exceeded.
-1 Fatal Error. Some condition, such as nvars < 0, was

encountered. CONSTRAINED_MIN documented the condition
in the report and terminated. In this case, the user needs to
correct the input and rerun CONSTRAINED_MIN.

Table 3-7: Inform Argument Values (Continued)

IDL Reference Guide CONSTRAINED_MIN

324 Chapter 3: Procedures and Functions

Inform value Message

-2 Fatal Error. The report file could not be opened. Check the
filename specified viathe REPORT keyword, and make sure
you have write privileges to the specified path.

-3 Fatal Error. Same as Inform = —1.. In this case, the REPORT
keyword was not specified. Specify the REPORT keyword and
rerun CONSTRAINED_MIN, then check the report file for
more detail on the error.

Table 3-7: Inform Argument Values (Continued)

Keywords

EPSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function is less than EPSTOP for NSTOP
consecutive iterations, the program will accept the current point as optimal.
CONSTRAINED_MIN will accept the current point as optimal if the Kuhn-Tucker
optimality conditions are satisfied to EPSTOP. By default, EPSTOP = 1.0e-4.

LIMSER

If the number of completed one dimensional searches exceeds LIMSER,
CONSTRAINED_MIN terminates and returnsinform = 3. By default: LIMSER =
10000.

MAXIMIZE

By default, the CONSTRAINED_MIN procedure performs a minimization. Set the
MAXIMIZE keyword to perform a maximization instead.

NSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function isless than EPSTOP for NSTOP
consecutive iterations, CONSTRAINED_MIN will accept the current point as
optimal. By default, NSTOP = 3.

CONSTRAINED_MIN IDL Reference Guide

Chapter 3: Procedures and Functions 325

REPORT

Set this keyword to specify aname for the CONSTRAINED_MIN report file. If the
specified file does not exist, it will be created. Note that if the file cannot be created,
no error message will be generated. If the specified file already exists, it will be
overwritten. By default, CONSTRAINED_MIN does not create a report file.

TITLE

Set this keyword to specify atitle for the problem in the CONSTRAINED_MIN
report.

Examples

This example has 5 variables { X0, X1, ..., X4}, bounded above and below, a
quadratic objective function { G3}, and three quadratic constraints { GO, G1, G2},
with both upper and lower bounds. See the Himmelblau text [7], problem 11.

Minimize:

G3 = 5.3578547X2X2 + 0.8356891X0X4 + 37.293239X0 - 40792. 141
Subject to:
0 < GO = 85.334407 + 0.0056858X 1X4 + 0.0006262X 0X 3 - 0.0022053X 2X4 < 92
90 < G1 =80.51249 + 0.0071317X1X4 + 0.0029955X 0X 1 + 0.0021813X2X2 <110
20 < G2 =9.300961 + 0.0047026X 2X 4 + 0.0012547X0X 2 + 0.0019085X 2X 3 < 25

and,
78 < X0 < 102
33 < X1 < 45
27 < X2 < 45
27 < X3 < 45
27 < X4 < 45

This problem is solved starting from X = {78, 33, 27, 27, 27} which isinfeasible
because constraint G2 is not satisfied at this point.

The constraint functions and objective function are evaluated by HMBL11:

H nmel bl au Problem 11
: 5 variables and 4 functions
FUNCTI ON HMVBL11, X

g = DBLARR(4)

g[0] = 85.334407 + 0.0056858*x[1] *x[4] + 0.0006262*x[0] $
*x[3] - 0.0022053*x[2] *x[4]

IDL Reference Guide CONSTRAINED_MIN

326

Chapter 3: Procedures and Functions

gl 1] = 80.51249 + 0.0071317*x[1]*x[4] + 0.0029955*x[0] $
*x[1] + 0.0021813*x[2] *x[2]

gl 2] = 9.300961 + 0.0047026*x[2]*x[4] + 0.0012547*x[0]* $
x[2] + 0.0019085*x[2] *x[3]

g[3] = 5.3578547*x[2] *x[2] + 0.8356891*x[0] *x[4] $
+ 37.293239*x[0] - 40792.141

RETURN, g

END

Exanpl e probl em for CONSTRAI NED M N
H nmel bl au Problem 11
; 5 variables and 3 constraints
; Constraints and objective defined in HVBL11

xbnd = [[78, 33, 27, 27, 27], [102, 45, 45, 45, 45]]
gbnd =[[0O, 90, 20, 0], [92, 110, 25, 0]]

nobj =3

gconp = 'HMBL11'

title ="'"IDL: H melblau 11

report = 'hnbl 11. txt"'

X [78, 33, 27, 27, 27]
CONSTRAI NED M N, x, xbnd, gbnd, nobj, gconp, inform $
REPORT = report, TITLE = title
g = HWVBL11(x)
Print mnimzed objective function for HVBL11 probl em
PRI NT, g[nobj]

References

1. Lasdon, L.S., Waren, A.D., Jain, A., and Ratner, M., “Design and Testing of a
Generalized Reduced Gradient Code for Nonlinear Programming”, ACM
Transactions on Mathematical Software, Vol. 4, No. 1, March 1978, pp. 34-50.

2. Lasdon, L.S. and Waren, A.D., “ Generalized Reduced Gradient Software for
Linearly and Nonlinearly Constrained Problems’, in “Design and |mplementation of
Optimization Software”, H. Greenberg, ed., Sijthoff and Noordhoff, pubs, 1979.

3. Abadie, J. and Carpentier, J. “ Generalization of the Wolfe Reduced Gradient
Method to the Case of Nonlinear Constraints’, in Optimization, R. Fletcher (ed.),
Academic Press London; 1969, pp. 37-47.

4. Murtagh, B.A. and Saunders, M.A. “Large-scale Linearly Constrained
Optimization”, Mathematical Programming, Vol. 14, No. 1, January 1978, pp. 41-72.

5. Powell, M.J.D., “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, Vol. 12, No. 2, April 1977, pp. 241-255.

6. Colville, A.R., “A Comparative Study of Nonlinear Programming Codes,” |.B.M.
T.R. no. 320-2949 (1968).

CONSTRAINED_MIN IDL Reference Guide

Chapter 3: Procedures and Functions 327

7. Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill Book Co.,
New York, 1972.

8. Fletcher, R., “A New Approach to Variable Metric Algorithms’, Computer
Journal, Vol. 13, 1970, pp. 317-322.

9. Smith, S. and Lasdon, L.S., Solving Large Sparse Nonlinear Programs Using
GRG, ORSA Journa on Computing, Vol. 4, No. 1,Winter 1992, pp. 1-15.

10. Luenbuerger, David G., Linear and Nonlinear Programming, Second Edition,
Addison-Wesl ey, Reading Massachusetts, 1984.

11. Windward Technologies, GRG2 Users's Guide, 1997.

Version History

51 Introduced

IDL Reference Guide CONSTRAINED_MIN

328 Chapter 3: Procedures and Functions

CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command. The two constructs are not related, and serve compl etely
different purposes.

Note
CONTINUE is not alowed within CASE or SWITCH statements. Thisisin
contrast with the C language, which does allow this.

For more information on using CONTINUE and other IDL program control
statements, see Chapter 7, “Program Control” in the Building IDL Applications
manual.

Syntax
CONTINUE
Examples

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10.

FOR |1 = 1,10 DO BEG N
|f odd, start next iteration:
IF (I AND 1) THEN CONTI NUE
PRI NT, |
ENDFOR

Version History

54 I ntroduced

CONTINUE IDL Reference Guide

Chapter 3: Procedures and Functions 329

CONTOUR

The CONTOUR procedure draws a contour plot from data stored in a rectangular
array or from aset of unstructured points. Both line contours and filled contour plots
can be created. Note that outline and fill contours cannot be drawn at the same time.
To create a contour plot with both filled contours and outlines, first create the filled
contour plot, then add the outline contours by calling CONTOUR a second time with
the OVERPLOT keyword.

Initssimplest form, CONTOUR makes a contour plot given atwo-dimensional array
of zvalues. In more complicated forms, CONTOUR accepts, in addition to z, arrays
containing the x and y locations of each column, row, or point, plus many keyword
parameters. In more sophisticated applications, the output of CONTOUR can be
projected from three dimensions to two dimensions, superimposed over an image, or
combined with the output of SURFACE.

Using various keywords, described below, it is possible to specify contour levels,
labeling, colors, line styles, and other options. CONTOUR draws contours by
searching for each contour line and then following the line until it reaches aboundary
or closes.

Smoothing Contours

Contours can be smoothed by using the MIN_CURVE_SURF function on the
contour data before contouring. The MIN_CURVE_SURF function can be used to
smoothly interpolate both regularly and irregularly sampled surfaces before
contouring. This function replaces the older SPLINE keyword to CONTOUR, which
was inaccurate and is no longer supported. MIN_CURVE_SURF interpolates the
entire surface to arelatively fine grid before drawing the contours.

Syntax

CONTOUR, Z[, X, Y] [, C_ ANNOTATION=vector_of_strings]
[, C_ CHARSIZE=valu€] [, C_CHARTHICK=integer] [, C_COLORS=vector]
[, C_LABELS=vector{each element O or 1}] [, C_LINESTY LE=vector]
[{,/CELL_FILL |,/FILL} |[, C_ORIENTATION=degrees|
[, C_SPACING=value]] [, C_THICK=vector] [, /CLOSED] [, /DOWNHILL]
[, /FOLLOW] [, IRREGULAR] [, /ISOTROPIC] [, LEVEL S=vector] [,
NLEVEL S=integer{1 to 60}] [, MAX_VALUE=value] [, MIN_VALUE=valug]
[, /OVERPLOT] [{, /PATH_DATA_COORDS, PATH_FILENAME=string,
PATH_INFO=variable, PATH_XY=variable} |, TRIANGULATION=variable]
[,/PATH_DOUBLE] [, /XLOG] [, /YLOG] [, ZAXIS={0|1]2|3]|4}]

IDL Reference Guide CONTOUR

330

Chapter 3: Procedures and Functions

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except for:
LINESTYLE, PSYM, SYMSIZE. See “Graphics Keywords Accepted” on
page 340.

Note
Many of the keyword parameters correspond directly to fieldsin the system
variables!P, IX, 1Y, or !Z. When specifying a keyword parameter name and value
in acall that value affects only the current call, the corresponding system-variable
field is not changed. Changing the value of a system-variable field changes the
default for that particular parameter and remainsin effect until explicitly changed.
The system variables involving graphics and their corresponding keywords are
detailed in “!P” in Appendix D.

Arguments

Z

Y

CONTOUR

A one- or two-dimensional array containing the values that make up the contour
surface. If arguments X and Y are provided, the contour is plotted as a function of the
(X, Y) locations specified by their contents. Otherwise, the contour is generated as a
function of the two-dimensional array index of each element of Z.

If the IRREGULAR keyword is set, X, Y, Z are dl required, and are treated as
vectors. Each point has avalue of Z[i] and alocation of (X[i], Y[i]).

This argument is converted to double-precision floating-point before plotting. Plots
created with CONTOUR are limited to the range and precision of double-precision
floating-point values.

A vector or two-dimensional array specifying the X coordinates for the contour
surface. If Xisavector, each element of X specifiesthe X coordinate for a column of
Z (e.g., X[Q] specifiesthe X coordinate for Z[0,*]). If X isatwo-dimensional array,
each element of X specifiesthe X coordinate of the corresponding pointin Z (i.e., X;;
specifies the X coordinate for Z;).

A vector or two-dimensional array specifying the Y coordinates for the contour
surface. If Y avector, each element of Y specifiesthe Y coordinate for arow of Z
(e.g., Y[OQ] specifiesthe Y coordinate for Z[*,0]). If Yisatwo-dimensional array,

IDL Reference Guide

Chapter 3: Procedures and Functions 331

each element of Y specifiesthe Y coordinate of the corresponding point in Z (Y;;
specifiesthe Y coordinate for Z;).

Keywords

C_ANNOTATION

The label to be drawn on each contour. Usually, contours are labeled with their value.
This parameter, a vector of strings, allows any text to be specified. Thefirst label is
used for the first contour drawn, and so forth. If the LEVELS keyword is specified,
the elements of C_ANNOTATION correspond directly to the levels specified,
otherwise, they correspond to the default levels chosen by the CONTOUR procedure.
If there are more contour levels than elementsin C_ANNOTATION, the remaining
levels are labeled with their values.

Use of this keyword implies use of the FOLLOW keyword.

Note
This keyword has no effect if the FILL or CELL_FILL keywordisset (i.e., if the
contours are drawn with solid-filled or line-filled polygons).

Example

To produce a contour plot with three levelslabeled “low”, “medium”, and “high”:

CONTOUR, Z, LEVELS = [0.0, 0.5, 1.0], $
C_ANNOTATION = ['low , 'medium, 'high']

C_CHARSIZE

The size of the characters used to annotate contour labels. Normally, contour labels
are drawn at 3/4 of the size used for the axis labels (specified by the CHARSIZE
keyword or 'PCHARSIZE system variable. This keyword allows the contour |abel
size to be specified directly. Use of this keyword implies use of the FOLLOW
keyword.

C_CHARTHICK

The thickness of the characters used to annotate contour labels. Set this keyword
equal to an integer value specifying the line thickness of the vector drawn font
characters. This keyword has no effect when used with the hardware drawn fonts.
The default value is 1. Use of this keyword implies use of the FOLLOW keyword.

IDL Reference Guide CONTOUR

332

Chapter 3: Procedures and Functions

C_COLORS

The color index used to draw each contour. This parameter is a vector, converted to
integer typeif necessary. If there are more contour levels than elementsin
C_COLORS, the elements of the color vector are cyclically repeated.

Example

If C_COLORS contains three elements, and there are seven contour levelsto be
drawn, the colors ¢, ¢4, Cy, Cy, C1, Cp, Co Will be used for the seven levels. To call
CONTOUR and set the colors to [100,150,200], use the command:

CONTOUR, Z, C_COLORS = [100, 150, 200]

C_LABELS

Specifies which contour levels should be labeled. By default, every other contour
level islabeled. C_LABELS alowsyou to override this default and explicitly specify
the levelsto label. This parameter is avector, converted to integer type if necessary.
If the LEVELS keyword is specified, the elements of C_LABELS correspond
directly to the levels specified, otherwise, they correspond to the default levels
chosen by the CONTOUR procedure. Setting an element of the vector to zero causes
that contour label to not be labeled. A nonzero value forces |abeling.

Use of this keyword implies use of the FOLLOW keyword.
Example

To produce a contour plot with four levels where all but the third level islabeled:

CONTOUR, Z, LEVELS = [0.0, 0.25, 0.75, 1.0], $
C LABELS = [1, 1, 0, 1]

C_LINESTYLE

CONTOUR

Theline style used to draw each contour. Aswith C_COLORS, C_LINESTYLE isa
vector of line styleindices. If there are more contour levels than line styles, the line
stylesare cyclically repeated. See“LINESTYLE" on page 5008 for alist of available
styles.

Note
The cell drawing contouring algorithm draws all the contours in each cell, rather
than following contours. Since an entire contour is not drawn as a single operation,
the appearance of the more complicated linestyles will suffer. Use of the contour
following method (sel ected with the FOLLOW keyword) will give better looking
resultsin such cases.

IDL Reference Guide

Chapter 3: Procedures and Functions 333

Example

To produce a contour plot, with the contour levels directly specified in avector V,
with all negative contours drawn with dotted lines, and with positive levelsin solid
lines:

CONTOUR, Z, LEVELS =V, C_LINESTYLE = (V LT 0.0)

C_ORIENTATION

If the FILL keyword is set, this keyword can be set to the angle, in degrees
counterclockwise from the horizontal, of the lines used to fill contours. If neither
C_ORIENTATION nor C_SPACING are specified, the contours are solid filled.

C_SPACING

If the FILL keyword is set, this keyword can be used to control the distance, in
centimeters, between the lines used to fill the contours.

C_THICK

Theline used to draw each contour level. Aswith C_COLORS, C_THICK isavector
of line thickness values, although the values are floating point. If there are more
contours than thickness elements, elements are repeated. If omitted, the overal line
thickness specified by the THICK keyword parameter or P THICK is used for all
contours.

CELL_FILL

Set this keyword to produce afilled contour plot using a“cell filling” algorithm. Use
this keyword instead of FILL when you are drawing filled contours over a map, when
you have missing data, or when contours that extend off the edges of the contour plot.
CELL_FILL islessefficient than FILL because it makes one or more polygons for
each datacell. It aso gives poor results when used with patterned (line) fills, because
each cell isassigned its own pattern. Otherwise, this keyword operates identically to
the FILL keyword, described below.

Tip
In order for CONTOUR to fill the contours properly when using a map projection,
the X and Y arrays (if supplied) must be arranged in increasing order. This ensures
that the polygons generated will be in counterclockwise order, as required by the

mapping graphics pipeline.

IDL Reference Guide CONTOUR

334

Chapter 3: Procedures and Functions

Warning
Do not draw filled contours over the poles on Cylindrical map projections. In this
case, the polar points map to lines on the map, and the interpolation becomes
ambiguous, causing errorsin filling. One possible work-around is to limit the
latitudes to the range of -89.9 degrees to + 89.9 degrees, avoiding the poles.

CLOSED

Set this keyword to a nonzero value to close contours that intersect the plot
boundaries. After a contour hits a boundary, it follows the plot boundary until it
connects with its other boundary intersection. Set CLOSED=0 along with
PATH_INFO and/or PATH_XY to return path information for contours that are not
closed.

DOWNHILL

Set this keyword to label each contour with short, perpendicular tick marks that point
in the “downhill” direction, making the direction of the grade readily apparent. If this
keyword is set, the contour following method is used in drawing the contours. For
example:

CONTOUR, data, /DOWNHI LL

FILL

CONTOUR

Set this keyword to produce afilled contour plot. The contours are filled with solid or
line-filled polygons. For solid polygons, use the C_COL OR keyword to specify the
color index of the polygons for each contour level. For linefills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or C_THICK
to specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the background
color before thefill lines are drawn, to avoid superimposing one pattern over another.

Contours that are not closed cannot be filled because their interior and exterior are
undefined. Contours created from data sets with missing data may not be closed;
many map projections can also produce contours that are not closed. You should not
use filled contours in these cases.

You should not use this keyword when you are drawing filled contours over a map,
when you have missing data, or when contours extend off the edges of the contour
plot. In these cases, you should use CELL_FILL instead.

IDL Reference Guide

Chapter 3: Procedures and Functions 335

Note
If the current graphics device is the Z-buffer, the algorithm used when the FILL

keyword is specified will not work when aZ value is also specified with the
graphics keyword ZVALUE. In thissituation, usethe CELL_FILL keyword instead
of the FILL keyword.

FOLLOW

In DL version 5, CONTOUR aways uses aline-following method. The FOLLOW
keyword remains available for compatibility with existing code, but is no longer
necessary. Asin previous versions of IDL, setting FOLLOW will cause CONTOUR

to draw contour |abels.

IRREGULAR
Set this keyword to indicate that the input dataisirregularly gridded. Setting
IRREGULAR isthe same as performing an explicit triangulation. That is:
CONTOUR, Z, X, Y, /IRREGULAR
isthe same as

TRI ANGULATE, X, VY, tri ; Get triangul ation
CONTOUR, Z, X, Y, TRI ANGULATI ON=tri

Note
If amapping projection is enabled when CONTOUR is called with this keyword,

the X and Y parameters areinterpreted as latitude and longitude values. Thisimplies
that spherical triangulation should be performed, which in turn implies that the X
and Y parameters will be converted to double precision and rearranged to match the
spherical triangulation. See the SPHERE keyword to TRIANGULATE for details.

ISOTROPIC
Set this keyword to force the scaling of the X and Y axesto be equal.

Note
The X and Y axes will be scaled isotropically and then fit within the rectangle

defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 5010 for more information.

IDL Reference Guide CONTOUR

336 Chapter 3: Procedures and Functions

LEVELS

Specifies a vector containing the contour levels drawn by the CONTOUR procedure.
A contour isdrawn at each level in LEVELS.

Example

To draw a contour plot with levelsat 1, 100, 1000, and 10000:
CONTOUR, Z, LEVELS = [1, 100, 1000, 10000]

To draw a contour plot with levels at 50, 60, ..., 90, 100:
CONTOUR, Z, LEVELS = FINDGEN(6) * 10 + 50

MAX_VALUE

Data points with values above this value are ignored (i.e., treated as missing data)
when contouring. Cells containing one or more corners with values above
MAX_VALUE will have no contours drawn through them. Note that the |IEEE
floating-point value NaN is also treated as missing data. (See “ Special Floating-Point
Values’ in Chapter 8 of the Building IDL Applications manual for more information
on | EEE floating-point values.)

MIN_VALUE

Data points with values less than this value areignored (i.e., treated as missing data)
when contouring. Cells containing one or more corners with values below
MIN_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “ Special Floating-Point
Vaues’ in Chapter 8 of the Building IDL Applications manual for more information
on | EEE floating-point values.)

NLEVELS

The number of equally spaced contour levels that are produced by CONTOUR. If the
LEVELS parameter, which explicitly specifiesthe value of the contour levels, is
present, this keyword has no effect. If neither parameter is present, approximately six
levels are drawn. NLEVEL S should be a positive integer.

OVERPLOT

Set this keyword to make CONTOUR “overplot”. That is, the current graphics screen
is not erased, no axes are drawn and the previously established scaling remainsin
effect. You must explicitly specify either the values of the contour levels or the

CONTOUR IDL Reference Guide

Chapter 3: Procedures and Functions 337

number of levels (viathe NLEVELS keyword) when using this option, unless
geographic mapping coordinates are in effect.

Note
When specifying overplot levels with the NLEVEL S keyword, keep in mind that
the levels are cal culated according to the range set by the original CONTOUR call.
If the overplot dataset has a different range, you might want to set your levels more
explicitly with the LEVELS keyword.

PATH_DATA_COORDS

Set this keyword to cause the output contour positions to be measured in data units
rather than the default normalized units. This keyword is useful only if the
PATH_XY or PATH_FILENAME keywords are set.

PATH_DOUBLE

Set this keyword to indicate that the PATH_FILENAME, PATH_INFO, and
PATH_XY keywords should return vertex and contour value information as double-
precision floating-point values. The default is to return this information as single-
precision floating-point values.

PATH_FILENAME

Specifies the name of afile to contain the contour positions. If PATH_FILENAME is
present, CONTOUR does not draw the contours, but rather, opens the specified file
and writes the coordinates of the contours, into it. The file consists of a series of
logical records containing binary data. Each record is preceded with a header
structure defining the contour as follows:

If the PATH_DOUBLE keyword is not set:
{ CONTOUR_HEADER, TYPE: 0B, HI GH: 0B, LEVEL:0, NUM OL, VALUE: 0. 0}
If the PATH_DOUBLE keyword is set:

{ CONTOUR DBL_HEADER, TYPE: 0B, H GH: 0B, LEVEL:0, NUM OL,
VALUE: 0. 0D}

IDL Reference Guide CONTOUR

338

Chapter 3: Procedures and Functions

Thefields are:
Field Description

TYPE A bytethat is zero if the contour is open, and oneif itis
closed.

HIGH A bytethat is 1if the contour is closed and above its
surroundings, and is 0 if the contour is below. Thisfieldis
meaninglessif the contour is not closed.

LEVEL A short integer with value greater or equal to zero (Itisan
index into the LEVELS array).

NUM The longword number of data pointsin the contour.

VALUE The contour value. If the PATH_DOUBLE keyword is not
set, thisis asingle-precision floating-point value; if the
PATH_DOUBLE keyword is set, thisis a double-precision
floating-point value.

Table 3-8: CONTOUR Fields

Following the header in each record are NUM X-coordinate values followed by
NUM Y-coordinate values. By default, these values are specified in normalized
coordinates unless the PATH_DATA_COORDS keyword is set.

PATH_INFO

CONTOUR

Set this keyword to a named variable that will return path information for the
contours. Thisinformation can be used, along with data stored in a variable named by
the PATH_XY keyword, to trace closed contours. To get PATH_INFO and
PATH_XY with contours that are not closed, set the CLOSED keyword to O. If
PATH_INFO is present, CONTOUR does not draw the contours, but rather records
the path information in an array of structures of the following type:

If the PATH_DOUBLE keyword is not set:

{ CONTOUR_PATH_STRUCTURE, TYPE: 0B, H GH LON 0B, $
LEVEL: O, N:OL, OFFSET:OL, VALUE:O. 0}

If the PATH_DOUBLE keyword is set:

{ COUNTOUR_DBL_PATH_STRUCTURE, TYPE: 0B, H GH LOW 0B, LEVEL:O,
N: OL, OFFSET:OL, VALUE:O0. 0D}

IDL Reference Guide

Chapter 3: Procedures and Functions

Thefields are;

339

Field

Description

TYPE

A bytethat is zero if the contour is open, and oneif itis
closed.

Note - If the CLOSED keyword is not explicitly set equal
to zero, all contourswill be closed.

HIGH_LOW

A bytethat is 1if the contour isaboveits surroundings, and
isOif the contour is below.

LEVEL

A short integer indicating the index of the contour level,
from zero to the number of levels minus one.

A long integer indicating the number of XY pairsin the
contour’s path.

OFFSET

A long integer that is the offset into the array defined by
PATH_XY, representing the first XY coordinate for this
contour.

VALUE

The contour value. If the PATH_DOUBLE keyword is not
set, thisis a single-precision floating-point value; if the
PATH_DOUBLE keyword is set, thisis a double-precision
floating-point value.

Table 3-9: PATH_INFO Fields

See the exampl es section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

PATH_XY

Set this keyword to a named variable that returns the coordinates of a set of closed

polygons defining the closed paths of the contours. This information can be used,
along with data stored in a variable named by the PATH_INFO keyword, to trace

closed contours. To get PATH_XY and PATH_INFO with contours that are not
closed, set the CLOSED keyword to 0. If PATH_XY is present, CONTOUR does not
draw the contours, but rather records the path coordinates in the named array. If the
PATH_DOUBLE keyword is not set, the array will contain single-precision floating
point values; if the PATH_DOUBLE keyword is set, the array will contain double-

precision floating point values. By default, the values in the array are specified in

normalized coordinates unless the PATH_DATA_COORDS keyword is set.

IDL Reference Guide

CONTOUR

340 Chapter 3: Procedures and Functions

See the exampl es section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

TRIANGULATION

Set this keyword to avariable that contains an array of triangles returned from the
TRIANGULATE procedure. Providing triangul ation data allows you to contour
irregularly gridded data directly, without gridding.

XLOG

Set this keyword to specify alogarithmic X axis.
YLOG

Set this keyword to specify alogarithmic Y axis.
ZAXIS

Set this keyword to an integer value to draw a Z axis for the CONTOUR plot.
CONTOUR draws no Z axis by default. This keyword is of use only if athree-
dimensional transformation is established. Possible values are:

No Z axisis drawn (the default)

Draws Z axis from the lower right-hand corner of the plot

Draws Z axis from the lower left-hand corner of the plot

Draws Z axis from the upper left-hand corner of the plot

Al W N|]| O

Draws Z axis from the upper right-hand corner of the plot

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords’ for the description of the following graphics
and plotting keywords:

BACKGROUND, CHARSIZE, CHARTHICK, CLIP, COLOR, DATA, DEVICE,
FONT, NOCLIP, NODATA, NOERASE, NORMAL, POSITION, SUBTITLE, T3D,
THICK, TICKLEN, TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE,
[XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK,
[XYZ]TICKFORMAT, [XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT,
[XYZ]TICKLEN, [XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS,
[XYZ]TICKV, [XYZ]TICK_GET, [XYZ]TITLE, ZVALUE

CONTOUR IDL Reference Guide

Chapter 3: Procedures and Functions 341

Examples

In addition to the following examples, aso seethe PLOT routine “Examples’ on
page 1702 for sasmplesthat control plot position, configure axes and position multiple
plots on a page. This section includes the following information:

“Using CONTOUR” on page 341 “Contour Irregularly-gridded with
TRIANGULATE” on page 345

“Contouring Methods’ onpage 342 “Contour of Digital Elevation Data’

on page 345
“Label Ten Contour Levels’ on “Labeling Contours’ on page 350
page 343
“Polygon Filling and Smoothing” on “Overlaying Images and Contour
page 343 Plots’ on page 351
“Plotting Closed Contour Paths” on “Displaying Date/Time Dataon a
page 344 Contour Display” on page 356

“Filling Contours’ on page 344

Note
Several of the following examples use batch files. See “ Running the Example
Code” on page 40 if IDL does not find the referenced batch file.

Using CONTOUR

Thebasic call to CONTOUR is asfollows:
CONTOUR, Z

where Z isatwo-dimensional array. This call 1abels the x- and y-axes with the
subscript along each dimension. For example, when contouring a 10 x 20 array, the x-
axisranges from 0 to 9, and the y-axis ranges from 0 to 19.

You can explicitly specify the x and y locations of each cell as follows:
CONTOUR, Z, X, Y

where the X and Y arrays can be either vectors or two-dimensional arrays of the same
sizeas Z. If they are vectors, the element z ; has a coordinate location of (X;, ¥;).
Otherwisg, if the x and y arrays are two-dimensional, the element z ; has the Iocatlon
(%ij» ¥i,j)- Thus, vectors should be used if the x location of z ; does not depend upon |
and the y location of z ; does not depend upon i.

IDL Reference Guide CONTOUR

342

Chapter 3: Procedures and Functions

Dimensions must be compatible. In the one-dimensional case, X must have a
dimension equal to the number of columnsin Z, and Y must have a dimension equal
to the number of rowsin Z. In the two- dimensional case, al three arrays must have
the same dimensions.

IDL uses linear interpolation to determine the x and y locations of the contour lines
that pass between grid elements. The cells must be regular in that the x and y arrays
must be monotonic over rows and columns, respectively. The lines describing the
quadrilateral enclosing each cell and whose verticesare (X; j, ¥;), (Xi+1j, Yi+1),
(Xi+1,+1 Yirrj+1)» @d (X j+1, ¥i j+1) must intersect only at the four corners and the
quadrilateral must not contain other nodes.

Contouring Methods

CONTOUR

In order to provide awide range of options, CONTOUR uses one of two contouring
algorithms. The algorithm used depends on the keywords specified, and is one of the
two following methods.

Cell Drawing

The first algorithm, used by default, examines each array cell and draws al contours
emanating from that cell before proceeding to the next cell. This method is efficient
in terms of computer resources, but does not alow options such as contour labeling
or smoothing.

Contour Following

The second method searches for each contour line, then follows the line until it
reaches a boundary or closes. This method gives better looking results with dashed
linestyles and allows contour labeling and bi-cubic spline interpolation, but requires
more computer time. The contour following method is used if any of these keywords
are specified: C_ANNOTATION, C_CHARSIZE, C_LABELS, CLOSED,
FOLLOW, PATH_FILENAME, or DOWNHILL.

Note
Due to their differing algorithms, these two methods will often draw dightly

different, yet correct, contour maps for the same data. This differenceisadirect
result of the fact that there is often more than one valid way to draw contours and
should not be a cause for concern.

IDL Reference Guide

Chapter 3: Procedures and Functions 343

Label Ten Contour Levels
This example creates a contour plot with 10 contour levelswhere every other contour
islabeled:
; Create a sinple dataset to plot:
Z = DI ST(100)

; Draw the plot:
CONTOUR, Z, NLEVELS=10, /FOLLOW TITLE="Sinple Contour Plot'

Polygon Filling and Smoothing

This example shows the use of polygon filling and smoothing.

; Handl e TrueCol or di spl ays:
DEVI CE, DECOVPOSED=0

; Create a surface to contour (2D array of random nunbers):
A = RANDOMJ(seed, 5, 6)

; Smooth the dataset before contouring:
B = M N_CURVE_SURF(A)

Load discrete colors for contours:
TEK_COLOR

: Draw filled contours:
CONTOUR, B, /FILL, NLEVELS=5, C_COLOR=I NDGEN(5) +2

Overplot the contour lines with tickmarks:
CONTOUR, B, NLEVELS=5, /DOMH LL, /OVERPLOT

Alternatively, we could draw line-filled contours by replacing the last two commands
with:

CONTOUR, B, C_ORI ENTATI ONS[0, 22, 45]

CONTOUR, B, /OVERPLOT, NLEVELS=5

The following short example shows the difference between a smoothed and an
unsmoothed contour plot:

; Create a sinple dataset:
data = RANDOMJ(seed, 7, 7)
;. Plot the unsnoot hed dat a:
CONTOUR, dat a

Pl ot the snpot hed dat a:
CONTOUR, M N_CURVE_SURF(dat a)

IDL Reference Guide CONTOUR

344

Chapter 3: Procedures and Functions

Plotting Closed Contour Paths

The following example saves the closed path information of a set of contours and
plots the result:

Create a 2D array of random nunbers:
A = RANDOMJ seed, 8, 10)

Smoot h the dataset before contouring:
B = M N_CURVE_SURF(A)

Conput e contour paths:
CONTOUR, B, PATH_XY=xy, PATH_I NFC=i nfo
FOR | = 0, (N_ELEMENTS(info) - 1) DO BEG N
S = [INDGEN(i nfo(l).N), O]

Pl ot the cl osed pat hs:
PLOTS, xy(*,|NFQ(l).OFFSET + S), /NORM
ENDFOR

Filling Contours

Set the FILL keyword to produce afilled contour plot. The contours are filled with
solid or line-filled polygons. For solid polygons, use the C_COLOR keyword to
specify the color index of the polygons for each contour level. For linefills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or C_THICK
to specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the background
color before thefill lines are drawn, to avoid superimposing one pattern over another.

The FILL keyword replaces the use of the PATH_FILENAME keyword and
POLYFILL procedure from previous versions of IDL. Setting the FILL keyword also
closes any open contours before filling.

The following example illustrates various filled contour plot options.

Create a sinple, random dataset for contouring:
data = RANDOMJ(seed, 7, 7)

Create a basic, solid-color, filled CONTOUR pl ot
; Wth 6 evenly-spaced | evels.
CONTOUR, data, NLEVELS=6, /FILL

Over pl ot contour outlines:
CONTOUR, data, NLEVELS=6, /NOERASE

Instead of solid colors, contours can be filled with lines:

Create a vector of orientations for the fill lines:
ANGLES = [0, 45, -45]

CONTOUR IDL Reference Guide

Chapter 3: Procedures and Functions 345

: Create a vector of colors to use:

C =[70, 120, 200, 255]

; Create contours filled with |ines.

CONTOUR, data, NLEVELS=10, C ORI ENT=ANGLES, C _CO.ORS=C
; Overplot contour outlines:

CONTOUR, data, NLEVELS=10, /NOERASE

There are many other controlsfor filled contour plots. The C_COLORS,
C LINESTYLE, C_SPACING, and C_THICK keywords can a so be used to control
the type of fill.

Contour Irregularly-gridded with TRIANGULATE

This example contours irregularly-gridded data without having to call TRIGRID.
First, use the TRIANGULATE procedure to get the Delaunay triangulation of your
data, then pass the triangulation array to CONTOUR:

Make 50 normal X, Y points:
RANDOWN(seed, 50)
RANDOMN(seed, 50)

< -
1

;. Make the Gaussi an:
Z = EXP(-(x"2 + y"2))

; Get triangulation:
TRI ANGULATE, X, Y, tri

Draw t he contours:
CONTOUR, Z, X, Y, TRI ANGULATION = tri

Contour of Digital Elevation Data

Digital elevation data of the Maroon Bells area, near Aspen, Colorado, are used to
illustrate the CONTOUR procedure. The data set was obtained from a United States
Geological Survey Digital Elevation Model tape. This data providesterrain elevation
data over a 7.5-minute square (approximately 11 x 13.7 kilometers at the latitude of
Maroon Bells), with 30-meter sampling.

The data are contained in a 360 x 460 array A, sampled in 30-meter square intervals,
measured in Universal Transverse Mercator (UTM) coordinates. The rectangular
array is not completely filled with data because the 7.5-minute square is not perfectly
oriented to the UTM grid system. Missing data are represented as zeroes. Elevation
measurements range from 2658 to 4241 meters or from 8720 to 13,914 feet.

The Maroon Bells data are used in a number of examplesin this section, and is
included in an IDL SAVE filecalled mar bel | s. dat intheexanpl es/ dat a
subdirectory of the IDL distribution. To restore the save file, issue the following

IDL Reference Guide CONTOUR

346

CONTOUR

Chapter 3: Procedures and Functions

commands at the IDL prompt (change the path separator characters as necessary for
your platform):

CD, !Dl R+ /exanpl es/ dat a'
RESTORE, 'marbells. dat'

Example Code
Thebatch filecnt our 01, located in the exanpl es/ doc/ pl ot subdirectory of the
IDL distribution, restores this data and defines severa variables used in the
following examples. Typing @nt our 01 at the IDL command prompt creates an
IDL variable named elev that contains the 360 x 460 integer array.

The figure below is the result of applying the CONTOUR procedure to the data,
using the default settings:

CONTQOUR, el ev

500 F
400

300 F

4
&
T
S

] TSR VIRt
0 100 200 300 400

Figure 3-19: Simple Contour Plot of Maroon Bells

A number of problems are apparent with this simple contour plot.

» IDL selected six contour levels, by default, for the elevation from 0 to 4241;
that's roughly 4241divided into 7 intervals or approximately 605 metersin
€levation between contour levels. The levels are 605, 1250, ..., 3635 meters,
even though the range of valid datais from 2658 to 4241 meters. Thisis
because the missing data values of O were considered when selecting the
intervals. It is generally more appropriate to select contour levels only within
the range of valid data.

e Thevertica contours along the left edge are an invalid artifact due to
contouring missing data and should not be present.

IDL Reference Guide

RSI_PROCODE/examples/doc/plot/cntour01

Chapter 3: Procedures and Functions 347

» For most display systems and for contour intervals of approximately 200
meters, the data has too many samplesin the x-y direction. This oversampling
has two adverse effects: the contours appear jagged, and alarge number of
short vectors are produced.

e Theaxesarelabeled by point number, but should bein UTM coordinates.

e Itisdifficult to visualize the terrain and to discern maximafrom minima
because each contour is drawn with the same type of line.

The above problems are readily solved using the following simple techniques:

e Specify the contour levels directly using the LEVEL S keyword parameter.
Selecting contour intervals of 250 meters, at elevation levels of [2750, 3000,
3250, 3500, 3750, 4000], resultsin six levels within the range of valid data.

» Change the missing data value to a value well above the maximum valid data
value, then use the MAX_VALUE keyword parameter to exclude missing
points. In this example, we set missing data values to one million with the
following statement:

el ev(WHERE(el ev EQ 0)) = 32767

Note
32767 isthe maximum allowable 16-bit integer.

« Usethe REBIN function to decrease the sampling in x and y by a factor of 5:
new = REBI N(el ev, 360/5, 460/5)

This smooths the contours, because the call to REBIN averages 52=25 hins when
resampling. The number of vectors transmitted to the display also are decreased by a
factor of approximately 25. The variable B isnow a72 x 92 array.

Careistaken in the second step to ensure that the missing data are not confused with
valid data after REBIN isapplied. Asin thisexample, REBIN averages bins of 52=25
elements, the missing data value must be set to avalue of at least 25 times the
maximum valid data value. After applying REBIN, any cell with amissing original
data point will have avalue of at least 106/25 = 40000, well over the largest valid
data value of approximately 4,500.

Thex and y vectors are constructed containing the UTM coordinates for each row and
column. From the USGS data tape, the UTM coordinate of the lower-left corner of
the array is (326,850: 4,318,500) meters. Asthe data spacing is 30 metersin both
directions, the x and y vectors, in kilometers, are easily formed using the FINDGEN
function, as shown in the example bel ow.

IDL Reference Guide CONTOUR

348

CONTOUR

Chapter 3: Procedures and Functions

Contour levels at each multiple of 500 meters (every other level) are drawn with a
solid line style, while levels that fall between are drawn with adotted line. In
addition, the 4000-meter contour is drawn with atriple thick line, emphasizing the
top contour.

The result of these improvements is shown in the figure below.

Maroon Bells Regicn

RN g s
a0 Gl SPa
43205 { e

IR R S
wanol - S e
43195 SO
43190 [I '

X S
aztes iy (e L AT

327.0 327.5 328.0 328.5

UTI Coordinates {(KM)
250 meter contours

Figure 3-20: Improved Contour Plot

This figure was produced with the cnt our 02 batch file.

; Restore variabl es:
@nt our 01
; Set missing data points to a | arge val ue:
elev (WHERE (elev EQ 0)) = 1E6
REBIN down to a 72 x 92 nmtri x:
new = REBI N(el ev, 360/5, 460/5)
; Make the x and y vectors specifying the position
;. of each colum and row.
X = 326.850 + .030 * FI NDGEN(72)
Y = 4318.500 + .030 * FI NDGEN(92)
Make the plot, specifying the contour |evels,
m ssing data value, linestyles, etc.

IDL Reference Guide

Chapter 3: Procedures and Functions 349

; Set the STYLE keywords to 1, obtaining exact axes.
CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $
XSTYLE = 1, YSTYLE = 1, YMARGA N = 5, MAX VALUE = 5000, $
C LINESTYLE = [1, O], $
CTHCK =11, 1, 1, 1, 1, 3], $
TITLE = ' Maroon Bells Region', $
SUBTI TLE = ' 250 neter contours', $
XTI TLE = ' UTM Coordi nates (KM'

Example Code
See cnt our 02 located in the exanpl es/ doc/ pl ot subdirectory of the IDL
installation directory for the example code. You can also run the batch file
cnt our 02 by entering the following command at the IDL prompt:

@nt our 02

See “Running the Example Code” on page 40 if IDL does not find the batch file.

The figure below illustrates the data displayed as a grayscale image. Higher
elevations are white. Thisimage demonstrates that contour plots do not aways
provide the best qualitative visualization of many two-dimensional data sets.

™~

Figure 3-21: Maroon Bells Data Displayed as an Image

IDL Reference Guide CONTOUR

RSI_PROCODE/examples/doc/plot/cntour02

350 Chapter 3: Procedures and Functions

Labeling Contours

The C_ANNOTATION, C_CHARSIZE, and C_LABELS keywords are used to
control contour labeling. Using them, possibly in conjunction with the LEVELS
keyword, it is possible to specify which contours should be labeled, the size of the
|abels, and the actual |abels that should be used.

In the following discussion, a variable named DATA is contoured. This variable
contains uniformly distributed random numbers obtained using the following
Statement:

SEED = 20 & DATA = RANDOMJ(SEED, 6, 6)

To label contours using the defaults for label size and contoursto label, it is sufficient
to select the FOLLOW keyword. In this case, CONTOUR labels every other contour
using the default label size (three-fourths of the plot axis label size). Each contour is
labeled with its value.

Figure 3-22: Simple Labeled Contour Plot

CONTOUR IDL Reference Guide

Chapter 3: Procedures and Functions 351

The preceding figure was produced using the following statement:
CONTOUR, / FOLLOW DATA

The C_CHARSIZE keyword is used to specify the size of the characters used for
labeling in the same manner that SIZE is used to control plot axislabel size. The
C_LABELSkeyword can be used to select the contours to be labeled. For example,
suppose that we want to contour the variable DATA at 0.2, 0.5, and 0.8, and we want
al threelevelslabeled. In addition, we wish to make each label larger, and use
hardware fonts. This can be accomplished with the statement bel ow.

CONTOUR, LEVEL=[0.2, 0.5, 0.8], C LABELS=[1, 1, 1], $
C CHARSI ZE = 1.25, DATA, FONT = 0

Theresult is the plot on the |eft in the figure bel ow.

Finally, it is possible to specify the text to be used for the contour labels using the
C_ANNOTATION keyword, as shown in the statements below.

CONTOUR, LEVEL=[0.2, 0.5, 0.8], C LABELS=[1, 1, 1], $
C_ANNOTATION = ["Low', "Mediunt, "High"], DATA, FONT=0

Theresult isthe plot on the right in the figure below.

Figure 3-23: Label Size and Levels Specified (left), Explicitly Specified Labels
(right)

Overlaying Images and Contour Plots

Superimposing an image and its contour plot combines the best of both worlds: the
image allows easy visualization and the contour lines provide a semi-quantitative
display. The programs presented in the rest of this section are for advanced
computing only.

IDL Reference Guide CONTOUR

352

Chapter 3: Procedures and Functions

A combined contour and image display, such as that discussed in this section, can be
created with the IMAGE_CONT procedure. The following material is intended to
illustrate the ways in which images and graphics can be combined using IDL.

The technique used to overlay plots and images depends on whether or not the device
is able to represent pixels of variable size, as does PostScript, or if it has pixels of a
fixed size. If the device does not have scal able pixels, the image must be resized to fit
within the plotting areaif it is not already of asize suitable for viewing. Thisleadsto
three separate cases that are illustrated in the following examples.

e “OQverlaying with Scalable Pixels’ below
e “Overlaying with Fixed Pixels’ on page 354

Overlaying with Scalable Pixels

CONTOUR

Certain devices, notably PostScript, can display pixels of varying sizes. With these
devices, it is easy to set the size and position of an image so that it exactly overlays
the plot window. In creating the next figure, the actual dimensions of the contour plot
window (contained in the ' X.WINDOW and 'Y.WINDOW system variables) were
used to calculate the new size of the image.

IDL Reference Guide

Chapter 3: Procedures and Functions 353

4321.0
4320.5
4320.0 7-

4319.5 -

327.0 327.5 328.0 328.5

UTI Coordinates {(KM)
250 meter contours

Figure 3-24: Overlay of Image and Contour Plots

Note
In order to do this successfully, you must establish the size of the plot window
before scaling the image. This means that you must make acall to CONTOUR
before displaying the image, to set the window size, and another call to CONTOUR
after displaying the image, to draw the contour lines on top of the image data.

Example Code
Inspect the batch file cnt our 03 located in the exanpl es/ doc/ pl ot
subdirectory of the IDL distribution to see how the figure was created.

Note that the aspect ratio of the image was changed to fit that of the plot window. To
retain the original image aspect ratio, the plot window must be resized to an identical
aspect ratio using the POSITION keyword parameter.

IDL Reference Guide CONTOUR

RSI_PROCODE/examples/doc/plot/cntour03

354

Chapter 3: Procedures and Functions

Overlaying with Fixed Pixels

CONTOUR

If the pixel sizeisfixed (asistrue on most displays), we can either resize theimageto
fit the plotting window or size the plotting window to fit the image dimensions.

Method 1: Scale the Image to Fit the Display

We can use the CONGRID function to create an image of the same size asthe
plotting window. The REBIN function also can be used to resample the origina
image if the plot window dimensions are an integer multiple or factor of the origina
image dimensions. REBIN is aways faster than CONGRID. The following IDL
procedure creates an image of the same size as the window, displaysit, then overlays
the contour plot.

;. Restore vari abl es:
@nt our 01
Set missing data points to a |large val ue:

elev (WHERE (elev EQ 0)) = 1E6

; REBIN down to a 72 x 92 matri x.

new = REBI N(el ev, 360/5, 460/5)

; Scale image intensities:

i mge = BYTSCL(el ev, M N=2658, MAX=4241)

Bef ore displaying the i mage, use the CONTOUR command

; to create the appropriate plot w ndow.

; The plot w ndow nmust be created before re-sizing

; the inmage data.

; Use the NODATA keyword to inhibit actually draw ng

; the contour plot.

CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $
MAX_VALUE = 5000, XSTYLE =1, YSTYLE =1, $
TITLE = ' Maroon Bells Region', $
SUBTI TLE = ' 250 nmeter contours', $
XTI TLE = ' UTM Coordi nates (KM ', /NODATA

; Get size of plot window in device pixels.

PX = I X. WNDOW * ! D. X VSI ZE

PY = 1'Y. WNDOW * ! D. Y_VSI ZE

; Desired size of image in pixels.

SX = PX[1] - PX[0] + 1

SY = PY[1] - PY[O] + 1

; Display the inage with its |lower-left corner at

the origin of the plot window and with its size

; scaled to fit the plot w ndow.

TVSCL, CONGRI D(image, SX, SY), PX[0], PY[0])

CONTOUR, new, X, Y, LEVELS = 2750 + FINDGEN(6) * 250., $
MAX_VALUE = 5000, XSTYLE = 1, YSTYLE = 1, $
TITLE = ' Maroon Bells Region', $
SUBTI TLE = ' 250 neter contours', $
XTI TLE = ' UTM Coordi nates (KM ', /NOERASE

IDL Reference Guide

Chapter 3: Procedures and Functions 355

; Wite the contours over the image, being sure
; to use the exact axis styles so that the contours
; fill the plot wi ndow. |nhibit erasing.

Example Code
Seethe cnt our 04 batch file located in the exanpl es/ doc/ pl ot subdirectory of
the IDL distribution for the example code. You can aso run the batch file
cnt our 04 with the following command at the IDL prompt:

@nt our 04

See “Running the Example Code” on page 40 if IDL does not find the batch file.
Method 2: Scale the Display to Fit the Image

If theimageisaready closeto the proper display size, it issimpler and more efficient
to change the plot window sizeto that of theimage. The following procedure displays
the image at the window origin, then sets the plot window to the image size, leaving
its origin unchanged.

: Restore vari abl es:

@nt our 01

; Set missing data points to a | arge val ue:

elev (WHERE (el ev EQ 0)) = 1E6

; REBIN down to a 72 x 92 matri x.

new = REBI N(el ev, 360/5, 460/5)

; Scale image intensities.

i mge = BYTSCL(el ev, M N=2658, MAX=4241)

; CGet size of plot wi ndow in device pixels.

PX = I X. WNDOW * I D. X_VSI ZE

PY = I'Y. WNDOW * I D.Y_VSI ZE

; Get the size of the inage.

SZ = Sl ZE(i mage)

; Display the inage with its |ower-left corner

; at the origin of the plot w ndow.

TVSCL, inmage, PX[0], PY[O]

; Wite the contours over the image, being sure to use

; the exact axis styles so that the contours fill the plot

; window. Inhibit erasing.

CONTOUR, new, X, Y, XSTYLE = 1, YSTYLE =1, $
POSITION = [PX[0], PY[O], PX[0]+SZ[1]-1, PY[0]+SZ[2]-1], $
LEVELS = 2750 + FI NDGEN(6) * 250., MAX_VALUE = 5000, $
TITLE = 'Maroon Bells Region', $
SUBTI TLE = ' 250 neter contours', $
XTI TLE = ' UTM Coordi nates (KM', /NCERASE, /DEVICE

IDL Reference Guide CONTOUR

RSI_PROCODE/examples/doc/plot/cntour04

356

Chapter 3: Procedures and Functions

Example Code
Seethecnt our 05 batch filelocated in the exanpl es/ doc/ pl ot subdirectory of
the IDL distribution for the example code. You can aso run the batch file
cnt our 05 with the following command at the IDL prompt:

@nt our 05

See “Running the Example Code” on page 40 if IDL does not find the batch file.

Displaying Date/Time Data on a Contour Display

CONTOUR

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of asingle circle on asphere recorded at every second for 37 seconds
after theinitial recording of 59 minutes and 30 seconds after 2 o'clock pm (14
hundred hours) on the 30th day of March in the year 2000:

nunber _sanpl es = 37

date_time = TI MEGEN(nunber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

angl e = 10. *FI NDGEN(nunber _sanpl es)

tenperature = BYTSCL(SI N(10.*! DTOR* $
FI NDGEN(nunber _sanpl es)) # COS(! DTOR*angl e))

Since the final contour display will be filled, we should define a color table:

DEVI CE, DECOWPCSED = 0
LOADCT, 5

The call to the DEVICE command with the DECOMPOSED keyword set to zero
allows color tables to be used on TrueColor displays, which may be the default
setting on some systems. The call to the LOADCT routine loads the Standard
Gamma-Il (number 5) color table, which isapart of IDL'slibraries.

Aswith the one-dimensional case, the format of the date/time valuesis specified
through the LABEL _DATE routine as follows

date_l abel = LABEL_DATE(DATE_FORMAT = $
['%: 96, "%, '9D 9% W'])
where %l represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

Thefirst level (closest to the axis) will contain minute and second val ues separated
by acolon (%l:%S). The second level (just below thefirst level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year value separated from the day and
month values by acomma (%D %M, %Y).

IDL Reference Guide

RSI_PROCODE/examples/doc/plot/cntour05

Chapter 3: Procedures and Functions 357

The resulting format is specified by using the CONTOUR routine with the
XTICKFORMAT keyword:

CONTOUR, tenperature, angle, date_tine, $
speci fying contour levels and fill colors.
LEVELS = BYTSCL(I NDGEN(8)), /XSTYLE, /YSTYLE, $
C COLORS = BYTSCL(| NDGEN(8)), /FILL, $
di splaying titles.
TITLE = ' Measured Tenperature (degrees Celsius)', $
XTITLE = 'Angle (degrees)', $
YTITLE = 'Time (seconds)', $
applying date/time formats to X-axis |abels.
PCSITION = [0.25, 0.2, 0.9, 0.9], $
YTI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE , 'LABEL_DATE'], $
YTICKUNNITS = ['Time', '"Hour', 'Day'], $
YTI CKI NTERVAL = 5, $
YTI CKLAYOQUT = 2
; Applying contour lines over the original contour display.
CONTOUR, tenperature, angle, date_tine, /OVERPLOT, $
LEVELS = BYTSCL(| NDGEN(8))

Asin the plot example, the POSITION keyword is set to allow the resulting display
to contain all three levels and the title of the date/time axis. The Y TICKUNITS
keyword is set to note the unit of each level. And the Y TICKINTERVAL keyword is
set to place the magjor tick marks at every five second interval.

This example aso containsthe Y TICKLAYOUT keyword. By default, this keyword
is set to O, which provides the date/time layout shown in the plot example.

IDL Reference Guide CONTOUR

358 Chapter 3: Procedures and Functions

In this example, Y TICKLAYOUT is set to 2, which rotates and boxes the tick 1abels
to provide the following results:

Meosured Temperature {degrees Celsius)

Time (=zeconds)
War 30, 2000
14

6] 140 200 300
Angle (degrees)

Figure 3-25: Displaying Date/Time Data with CONTOUR

Note
You could set system variablesinstead of graphic keywordsin the previous

example. See “Using System Variables to Display Date/Time Data” on page 1331
for details.

Version History

Origind Introduced

See Also

ICONTOUR, IMAGE_CONT, SHADE_SURF, SHOW3, SURFACE, IDLgrContour

CONTOUR IDL Reference Guide

Chapter 3: Procedures and Functions 359

CONVERT_COORD

The CONVERT_COORD function transforms one or more sets of coordinatesto and
from the coordinate systems supported by IDL.

The input coordinates X and, optionally, Y and/or Z can be given in data, device, or
normalized form by using the DATA, DEVICE, or NORMAL keywords. The default
input coordinate system is DATA. The keywords TO_DATA, TO_DEVICE, and
TO_NORMAL specify the output coordinate system.

If the input points are in 3D data coordinates, be sure to set the T3D keyword.

Note
CONVERT_COORD utilizes values currently stored inthe !X, 'Y, 1Z and P
system variables to compute coordinate conversion factors. See “ Two-Dimensional
Coordinate Conversion” on page 5049 for more information.

Warning
For devices that support windows, CONVERT_COORD can only provide valid
resultsif awindow is open and current. Also, CONVERT_COORD only appliesto
Direct Graphics devices.

Syntax

Result = CONVERT_COORD(X[, Y[, Z]] [, /DATA |, /DEVICE |, INORMAL]
[,/DOUBLE][, /T3D] [, /TO_DATA |,/TO_DEVICE|,/TO NORMAL])

Return Value

Theresult of the function is a (3, n) vector containing the (x, y, Z) components of the
n output coordinates.

Arguments

X

A vector or scalar argument providing the X components of the input coordinates. If

only one argument is specified, X must be an array of either two or three vectors (i.e.,
(2,*) or(3,*)).Inthisspecia case, X[0, *] aretakenasthe X values, X[1, *] are
taken asthe Y values, and, if present, X[2, *] aretaken asthe Z values.

IDL Reference Guide CONVERT_COORD

360 Chapter 3: Procedures and Functions

Y
An optional argument providing the Y input coordinate(s).
Z

An optional argument providing the Z input coordinate(s).
Keywords
DATA

Set this keyword if the input coordinates are in data space (the default).
DEVICE

Set this keyword if the input coordinates are in device space.
DOUBLE

Set this keyword to indicate that the returned coordinates should be double-precision.
If this keyword is not set, the default is to return single-precision coordinates (unless
double-precision arguments are input, in which case the returned coordinates will be
double-precision).

NORMAL

Set this keyword if the input coordinates are in normalized space.
T3D

Set this keyword if the 3D transformation !P.T isto be applied.
TO_DATA

Set this keyword if the output coordinates are to be in data space.
TO_DEVICE

Set this keyword if the output coordinates are to be in device space.
TO_NORMAL

Set this keyword if the output coordinates are to be in normalized space.

CONVERT_COORD IDL Reference Guide

Chapter 3: Procedures and Functions 361

Examples

Convert, using the currently established viewing transformation, 11 points along the
parametric linex = t, y = 2t, z=t?, along the interval [0, 1] from data coordinates to
device coordinates:

Establish a valid transformation nmatri x:
SURFACE, DI ST(20), /SAVE

Make a vector of X val ues:
X = FINDGEN(11)/10.

Convert the coordinates. Dwill be a (3,11) elenent array:
D = CONVERT_COORD(X, 2*X, X~2, /T3D, /TO_DEVI CE)

To convert the endpoints of aline from data coordinates (0, 1) to (5, 7) to device
coordinates, use the following statement:

D = CONVERT_COORD([0, 5], [1, 7], /DATA, /TO DEVI CE)

On completion, the variable D isa (3, 2) vector, containing the x, y, and z coordinates
of the two endpoints.

Three-Dimensional Direct Graphic Coordinate Conversion

The CONVERT_COORD function performs the three-dimensional coordinate
conversion process (described in “Three-Dimensional Coordinate Conversion” in
Chapter 8 of the Using IDL manual) when converting to and from coordinate systems
when the T3D keyword is specified. For example, if athree-dimensiona coordinate
system is established, then the device coordinates of the data point (0, 1, 2) can be
computed as follows:

D = CONVERT_COCRD(O0, 1, 2, /TO DEVICE, /T3D, /DATA)

On completion, the three-element vector D will contain the desired device
coordinates. The process of converting from three-dimensional to two-dimensional
coordinates also can be written as an IDL function. This function accepts a three-
dimensional data coordinate, returns a two-element vector containing the coordinate
transformed to two-dimensional normalized coordinates using the current
transformation matrix:

FUNCTION CVT_TO 2D, X, Y, Z
Make a honobgeneous vector of normalized 3D coordinates:
P=[!'XS[0] +!XS[1] * X !Y.S[0] +!Y.5[1] *VY, &%
1Z.9[0] +'Z. 9[1] * Z, 1]
Transformby !'P. T:
P=P#IPT

IDL Reference Guide CONVERT_COORD

362 Chapter 3: Procedures and Functions

Return the scaled result as a two-el enent,
t wo- di mensi onal , xy vector:
RETURN, [P[O] / P[3], P[1] / P[3]]
END

Version History

Pre4.0 Introduced

See Also

CV_COORD

CONVERT_COORD IDL Reference Guide

Chapter 3: Procedures and Functions 363

CONVOL

The CONVOL function convolves an array with akernel, and returns the result.
Convolution is ageneral process that can be used for various types of smoothing,
signal processing, shifting, differentiation, edge detection, etc. The CENTER
keyword controls the alignment of the kernel with the array and the ordering of the
kernel elements. If CENTER is explicitly set to 0, convolution is performed in the
strict mathematical sense; otherwise, the kernel is centered over each data point.

Using CONVOL

Assume R = CONVOL(A, K, S), where A is an n-element vector, K is an k-element
vector (k < n), and Sisthe scale factor. If the CENTER keyword is omitted or set to 1:

k-1
éZAHi—k/ZKi if k/2£t£n—g_1
i=0

R =

0 otherwise

where the value k/2 is determined by integer division. This means that the result of
the division isthe largest integer value less than or equal to the fractional number.

If CENTER isexplicitly set to O:

k-1
1)
i=0
0 otherwise

In the two-dimensional, zero CENTER case where A is an m-by-n-element array, and
K isthe k-by-k element kernel; the result Ris an m by n-element array:

k-1 k-1

= éz 2 Acmiu-iKi if t>k-1 and u>k-1

R, =
t
U i=0j=0

0 otherwise

IDL Reference Guide CONVOL

364 Chapter 3: Procedures and Functions

The centered case is similar, except the t-i and u-j subscripts are replaced by t+i-k/2
and u+j-k/2.

Syntax

Result = CONVOL(Array, Kernel [, Scale_Factor] [, BIAS=valug] [, /CENTER]
[, [IEDGE_TRUNCATE] [, /EDGE_WRAP] [, [EDGE_ZERO]
[, INVALID=value] [, MISSING=value] [, /NAN] [, /NORMALIZE])

Return Value

Returns the result of the array convolution. Depending on Array’s type, the
computation might be performed using a different type, although the result will
aways have the same type as Array. The following table shows the types used, as
well asany clipping of the result values. The calculation type is also used for Kernel,
Scale Factor, and BIAS.

BYTE LONG [0,255]
INT LONG [-32768,32767]
LONG LONG None
FLOAT FLOAT None
DOUBLE DOUBLE None
COMPLEX COMPLEX None
DCOMPLEX | DCOMPLEX None
UINT LONG [0,65535]
ULONG LONG None
LONG64 LONG64 None
ULONG64 LONG64 None

Table 3-10: Calculation Types and Clipping for CONVOLs Return Value

CONVOL IDL Reference Guide

Chapter 3: Procedures and Functions 365

Arguments

Array

An array of any basic type except string. The result of CONVOL has the same type
and dimensions as Array.

Kernel

An array of any type except string. If the type of Kernel isnot the same as Array, a
copy of Kernel is made and converted to the appropriate type before use (for byte
data, the kernel is converted to type LONG). The size of the kernel dimensions must
be less than or equal to those of Array.

Note
CONVOL accepts non-square kernels including one-dimensional kernels.

Scale Factor

A scale factor that is divided into each resulting value. This argument should be of
the same type as the calculation type in Table 3-10, and is automatically converted if
necessary. For byte or integer input arrays, the argument allows the use of fractional
kernel values and avoids overflow of the result. If omitted or set to zero, a scale factor
of 1isused.

Note
The same Scale Factor is always divided into each result value, regardiess of any
missing data as specified by the INVALID or NAN keywords. It is usually not
appropriate to divide the result value by the full scale factor if portions of the kernel
were not applied due to missing data. In this case, you might want to use the
NORMALIZE keyword instead.

Keywords

BIAS

Set this keyword to the bias offset to be added to each result value, after any

Scale Factor has been applied. BIAS should be of the same type as the calculation
typein Table 3-10, and will be automatically converted if necessary. If you have
negative kernel values and a byte or unsigned integer input array, you can use this
keyword to ensure that the result values are within the range of your data type.

IDL Reference Guide CONVOL

366 Chapter 3: Procedures and Functions

Note
The same BIASis aways added to each result value, regardless of any missing data

as specified by the INVALID or NAN keywords. It isusually not appropriate to add
the full BIASIf portions of the kernel were not applied due to missing data. In this
case, you might want to use the NORMALIZE keyword instead.

CENTER

Set or omit this keyword to center the kernel over each array point. If CENTER is
explicitly set to zero, the CONVOL function worksin the conventional mathematical
sense. In many signal and image processing applications, it is useful to center a
symmetric kernel over the data, thereby aligning the result with the original array.

Note that for the kernel to be centered, it must be symmetric about the point
K(FLOOR(m/2)), where mis the number of elementsin the kernel.
EDGE_TRUNCATE

Set this keyword to make CONVOL compute the values of elements at the edge of
Array by repeating the subscripts of Array at the edge. For example, if CENTER is
set to zero:

K
_1
R = S Z A((t—i) >0< (n—l))Ki
i=0

where n isthe number of elementsin Array. The“<” and “>" operatorsin the above
formulareturn the smaller and larger of their operands, respectively.

If none of the EDGE_* keywords are set, CONVOL sets the values of Result to zero
(or the value of BIAS) where the kernel extends beyond the edge.

EDGE_WRAP

Set this keyword to make CONVOL compute the values of elements at the edge of
Array by “wrapping” the subscripts of Array at the edge. For example, if CENTER is
set to zero:
k-1
_ 1
R; = § z A((t - i)mod(n))Ki
i=0

CONVOL IDL Reference Guide

Chapter 3: Procedures and Functions 367

where n isthe number of elementsin Array. The mod operator in the formula above
isdefinedasa mod b = a - b * floor(a/b).Forexample -1 mod5is4.

If none of the EDGE_* keywords are set, CONVOL sets the values of Result to zero
(or the value of BIAS) where the kernel extends beyond the edge.

EDGE_ZERO

Set this keyword to make CONVOL compute the values of elements at the edge of
Array asif the array were padded with zeroes. For example, if CENTER is set to
zexo:

3_L
S

otherwise

ik

?
=M

If none of the EDGE_* keywords are set, CONVOL sets the values of Result to zero
(or the value of BIAS) where the kernel extends beyond the edge.

INVALID

Set this keyword to a scalar value of the same type as Array that should be used to
indicate missing or invalid data within Array. Missing data are ignored when
computing the convolution for neighboring elements. In Result, missing elements are
replaced by the convolution of all other valid points within the kernel. If al points
within the kernel are missing, the result at that point is given by the value of the
MISSING keyword.
Tip
The INVALID keyword has the same effect as the NAN keyword, but is useful for
byte or integer data which have missing values.

Note
The INVALID keyword uses a simple comparison to ignore values and should not

be set to NaN. For floating-point data, you can use the INVALID and NAN
keywords simultaneously to filter out both user-defined values and NaN or Infinity
values.

IDL Reference Guide CONVOL

368 Chapter 3: Procedures and Functions

MISSING

Set this keyword to the numeric value to return for elements that contain no valid
points within the kernel. The default is zero for byte or integer input, and NaN for
floating-point input. This keyword isonly used if the INVALID or NAN keyword is
Set.

NAN

Set this keyword to cause the routine to check for occurrences of the | EEE floating-
point values NaN or Infinity in the input data. Elements with the value NaN or Infinity
are treated as missing data. (See “ Specia Floating-Point Values’ in Chapter 8 of the
Building IDL Applications manual for more information on | EEE floating-point
values.) Missing data are ignored when computing the convolution for neighboring
elements. In the Result, missing elements are replaced by the convolution of all other
valid points within the kernel. If al points within the kernel are missing, then the
result at that point is given by the MISSING keyword.

Note
CONVOL should never be called without the NAN keyword if the input array may
possibly contain NaN or Infinity values.

NORMALIZE

Set this keyword to automatically compute a scale factor and bias and apply them to
theresult values. If this keyword is set, the Scale_Factor argument and the BIAS
keyword areignored. For al input types, the scale factor is defined as the sum of the
absolute values of Kernel. For BY TE or UINT, the bias is defined as the sum of the
absolute values of the negative Kernel values, multiplied by either (255/Scale) for
BYTE or (65535/Scale) for UINT, where Scale is the computed scale factor. For all
other types, the biasis zero.

Tip
If NORMALIZE is set and your input array has missing data (the INVALID or
NAN keywords are set), for each result value the scale factor and bias are computed
using only those kernel values that contributed to that result value. This ensures that
al result values are comparable in magnitude, regardless of any missing data.

CONVOL IDL Reference Guide

Chapter 3: Procedures and Functions 369

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Note
Also see“Filtering an Image” and “ Sharpening an Image” in Chapter 8 of the Image
Processing in IDL manual.

The first example uses akernel to detect diagonal linesin an image. The code uses
Scale_Factor and BIAS to ensure that the result values are still within the range of
byte values.

; Sanpl e i mage
array = READ PNE FILEPATH(' mineral.png', $
SUBDI RECTORY=[' exanpl es',"data']))

Edge detection kernel
kernel =] [0,1,0],[-21,0,1],[0,-1,0]]

; Convolution with scale factor = total (abs(kernel)
; bias (sum of abs of negative kernel s)*(255/ Scal e)
result CONVOL(array, kernel, 4, BlIAS=2.0*255/4)

LOADCT, 39, /SILENT

TVLCT, r, g, b, [/CGET

Il MAGE, array, VIEWGRID=[2,1], RGB_TABLE=[[r],[g],[b]]
I MAGE, result, /VIEWNEXT, RGB TABLE=[[r],[g],[b]]

Figure 3-26 shows the result of running this code.

IDL Reference Guide CONVOL

370 Chapter 3: Procedures and Functions

&l IDL ilmage [Untitled*]
File Edt Insert Operations window Help

pl@E o] ele] s ofFmal] &)] Al olo|ele

4 image |

ROls O]9 |2

Pirel Location:

Firel Y alue:

Fivel Seale:
el

Edit Palette..
Charnel]

T Link A1

Mawf191.25
Min: {63 75

(576,507

MView Translate

Figure 3-26: CONVOL Example of Detecting Diagonal Lines

The second example smooths a hoisy image that has missing data and use the
NORMALIZE keyword to automatically remove much of the missing data.

; Array with noise
array = HANNI NG 300, 300) + 0. 1* RANDOWN(s, 300, 300)

; Convert to bytes from[1, 255]
array = BYTSCL(array, TOP=254)

; Add sone missing scanlines, plus a |arge region
array[*, RANDOMJ(s, 40)*300] = 255
array[*, 10:20] = 255

Si npl e Gaussi an ker nel
kernel =[$
[1, 8, 15, 8, 1], $
8, 63,127, 63, 8], $
15, 127, 255, 127, 15], $
8, 63,127, 63, 8], $
1, 8, 15, 8, 1]]

—— ——

CONVOL IDL Reference Guide

Chapter 3: Procedures and Functions 371

; Values of 255 are flagged as invalid (m ssing)

; and replaced by O if there are no valid val ues

;. wWithin the kernel

result = CONVOL(array, kernel, |NVALID=255, M SSING=0, $
/ NORMALI ZE, /EDGE_ZERO)

LOADCT, 39, /SILENT

TVLCT, r, g, b, /[CET

Il MAGE, array, VIEWGRID=[2,1], RGB_TABLE=[[r],[g],[b]]
I MAGE, result, /VIEWNEXT, RGB TABLE=[[r],[g].[b]]

Figure 3-27 shows the result of running this code.

S| IDL ilmage [Untitled*]
File Edit Insert Operations Window Help

Dlesl@lg| B e RN R e N AN = = R
4 1mage |
ololelel
Esips |
[o=]

’
e
T

Click & drag to pan visw [532.491]

Figure 3-27: CONVOL Example of Smoothing a Noisy Image with Missing Data

Version History

Original Introduced
6.2 Added BIAS, EDGE_ZERO, INVALID, and NORMALIZE
keywords

IDL Reference Guide CONVOL

372 Chapter 3: Procedures and Functions

See Also

BLK_CON

CONVOL IDL Reference Guide

Chapter 3: Procedures and Functions 373

COORD2TO3

The COORD2TO3 function converts normalized X and Y screen coordinates to 3D
data coordinates.

Note
A valid 3D transform must exist in !PT or be specified by the PTI keyword. The
axis scaling variables, IX.S, 'Y.Sand ! Z.S must be valid.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
coord2t 03. pro inthel i b subdirectory of the IDL distribution.

Syntax
Result = COORD2TO3(Mx, My, Dim, DO [, PTI])
Return Value

Returns a three-element vector containing 3D data coordinates given the normalized
X and Y screen coordinates and one of the three data coordinates.

Arguments

Mx, My
The normalized X and Y screen coordinates.
Dim
A parameter used to specify which data coordinateis fixed. Use O for afixed X data
coordinate, 1 for afixed Y data coordinate, or 2 for afixed Z data coordinate.
DO
The value of the fixed data coordinate.
PTI

Theinverse of !PT. If this parameter is not supplied, or set to 0, COORD2TO3
computes the inverse. If thisroutine isto be used in aloop, the caller should supply
PTI for highest efficiency.

IDL Reference Guide COORD2TO3

374 Chapter 3: Procedures and Functions

Keywords
None.
Examples

To return the data coordinates of the mouse, fixing the data Z value at 10, enter the
commands;

;Make sure a transformation natri x exists.
CREATE_VI EW

;Get the nornalized nouse coords.
CURSCR, X, Y, /NORM

:Print the 3D coordi nates.
PRI NT, COORD2TC3(X, Y, 2, 10.0)

See Also

CONVERT_COORD, CREATE_VIEW, CV_COORD, SCALES3, T3D

COORD2TO3 IDL Reference Guide

Chapter 3: Procedures and Functions 375

COPY_LUN

The COPY_LUN procedure copies data between two open files. It allows you to
transfer aknown amount of data from one file to another without needing to have the
dataavailablein an IDL variable. COPY_LUN can copy afixed amount of data,
specified in bytes or lines of text, or it can copy from the current position of the file
pointer in the input file to the end of that file.

COPY _LUN copies data between open files. To copy entire files based on their
names, see the FILE_COPY procedure. To read and discard a known amount of data
from afile, seethe SKIP_LUN.

Syntax

COPY_LUN, FromUnit, ToUnit [, Num] [, /EOF] [, /LINES]
[, TRANSFER_COUNT]

Arguments

FromUnit

An integer that specifies the file unit for the file from which datais to be taken (the
sourcefile). Datais copied from FromUnit, starting at the current position of thefile
pointer. The file pointer is advanced as datais read. The file specified by FromUnit
must be open, and must not have been opened with the RAWIO keyword to OPEN.

ToUnit

An integer that specifies the file unit for the file to which datais to be written (the
destination file). Datais written to ToUnit, starting at the current position of thefile
pointer. The file pointer is advanced as data is written. The file specified by ToUnit
must be open for output (OPENW or OPENU), and must not have been opened with
the RAWIO keyword to OPEN.

Num

The amount of datato transfer between the two files. Thisvalue is specified in bytes,
unless the LINES keyword is specified, in which case it is taken to be the number of
text lines. If Numis not specified, COPY_LUN acts asif the EOF keyword has been
set, and copies all datain FromUnit (the source file) from the current position of the
file pointer to the end of thefile.

IDL Reference Guide COPY_LUN

376 Chapter 3: Procedures and Functions

If Num s specified and the source file comesto end of file before the specified
amount of datais transferred, COPY_LUN issues an end-of-file error. The EOF
keyword aters this behavior.

Keywords

EOF

Set this keyword to ignore the value given by Num (if present) and instead transfer all
data between the current position of the file pointer in FromUnit and the end of the
file.

Note
If EOF is set, no end-of-file error isissued even if the amount of data transferred
does not match the amount specified by Num. The TRANSFER_COUNT keyword
can be used with EOF to determine how much data was transferred.

LINES

Set this keyword to indicate that the Num argument specifies the number of lines of
text to be transferred. By default, the Num argument specifies the number of bytes of
datato transfer.

TRANSFER_COUNT

Set this keyword equal to anamed variable that will contain the amount of data
transferred. If LINESis specified, this valueis the number of lines of text. Otherwise,
it isthe number of bytes. TRANSFER_COUNT is primarily useful when the Num
argument is not specified or the EOF keyword is present. If Num s specified and the
EOF keyword is not present, TRANSFER_COUNT will be the same as the value
specified for Num.

Examples

Copy the next 100000 bytes of data between two files:
COPY_LUN, Fromunit, ToUnit, 100000

Copy the next 8 lines of text between two files:
COPY_LUN, Fronbnit, ToUnit, 8, /LINES

COPY_LUN IDL Reference Guide

Chapter 3: Procedures and Functions 377

Copy the remainder of the datain one file to another, and use the
TRANSFER_COUNT keyword to determine how much data was copied:

COPY_LUN, Fronlnit, ToUnit, /ECOF, TRANSFER _COUNT=n

Copy theremaining lines of text from one file to another, and use the
TRANSFER_COUNT keyword to determine how many lines were transferred.

COPY_LUN, FronmUnit, ToUnit, /EOF, /LINES, TRANSFER COUNT=n

Version History

5.6 I ntroduced

See Also

CLOSE, EOF, FILE_COPY, FILE_LINK, FILE_MOVE,
OPENR/OPENU/OPENW, READ/READF, SKIP_LUN, WRITEU

IDL Reference Guide COPY_LUN

378 Chapter 3: Procedures and Functions

CORRELATE

The CORRELATE function computes the linear Pearson correlation coefficient of
two vectors or the correlation matrix of an mx n array. Alternatively, this function
computes the covariance of two vectors or the covariance matrix of an mx n array.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
correl ate. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = CORRELATE(X[, Y] [, /COVARIANCE] [, /DOUBLE])

Return Value

If vectors of unequal lengths are specified, the longer vector is truncated to the length
of the shorter vector and a single correlation coefficient is returned. If an mx n array
is specified, the result will be an mx marray of linear Pearson correlation
coefficients, with the element i,j corresponding to correlation of theith and jth
columns of the input array.

Arguments
X

A vector or an mx n array. X can be integer, single-, or double-precision floating-
point.

Y

Aninteger, single-, or double-precision floating-point vector. If Xisan mx narray, Y
should not be supplied.

Keywords
COVARIANCE

Set this keyword to compute the sample covariance rather than the correlation
coefficient.

CORRELATE IDL Reference Guide

Chapter 3: Procedures and Functions 379
DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.
Examples

Define the data vectors.

X
Y

[65, 63, 67, 64, 68, 62, 70, 66, 68, 67, 69, 71]
[68, 66, 68, 65, 69, 66, 68, 65, 71, 67, 68, 70]

Compute the linear Pearson correlation coefficient of x and y. The result should be
0.702652:

PRI NT, CORRELATE(X, Y)
IDL prints:
0. 702652
Compute the covariance of x and y. The result should be 3.66667.
PRI NT, CORRELATE(X, Y, / COVARI ANCE)
IDL prints:
3. 66667
Define an array with x and y as its columns.
A = TRANSPGSE([[X].[Y]])
Compute the correlation matrix.
PRI NT, CORRELATE(A)
IDL prints:
1. 00000 0. 702652
0.702652 1.00000

Version History

Pre4.0 Introduced

See Also

A CORRELATE, C_ CORRELATE, M_CORRELATE, P CORRELATE,
R_CORRELATE, “Correlation Analysis’ in Chapter 12 of the Using IDL manual

IDL Reference Guide CORRELATE

380

COS

COSs

Chapter 3: Procedures and Functions

The periodic function COS returns the trigonometric cosine of X.

Syntax

Result = COS(X)

Return Value

Returns the trigonometric cosine of X.

Arguments

The angle for which the cosine is desired, specified in radians. If X is double-
precision floating or complex, the result is of the sametype. All other types are
converted to single-precision floating-point and yield floating-point results. When
applied to complex numbers:

COS(x) = (EXP(i*x) + VEXP(i*x))/2
wherei is defined as COMPLEX (0, 1).

If Xisan array, the result has the same structure, with each element containing the
cosine of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for asingle invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide

Chapter 3: Procedures and Functions 381
Examples
Find the cosine of 0.5 radians and print the result by entering:
PRI NT, COS(.5)
IDL prints:
0.877583
Version History
Original Introduced
See Also
ACOS, COSH
IDL Reference Guide COS

382

Chapter 3: Procedures and Functions

COSH

COSH

The COSH function returns the hyperbolic cosine of X.

Syntax

Result = COSH(X)

Return Value

Returns the hyperbolic cosine of X.

Arguments

The value for which the hyperbolic cosineis desired, specified in radians. If Xis
double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results.
COSH isdefined as:

COSH(u) = (e"+€e' /2

If Xisan array, the result has the same structure, with each element containing the
hyperbolic cosine of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for a singleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide

Chapter 3: Procedures and Functions 383

Examples

Find the hyperbolic cosine of 0.5 radians and print the result by entering:
PRI NT, COSH(. 5)

IDL prints:
1.12763

Version History

Original Introduced

See Also

ACQS, COS

IDL Reference Guide COSH

384 Chapter 3: Procedures and Functions

The CPU procedure is used to change the values stored in the read-only | CPU system
variable, which in turn controls the way IDL uses the system processor or processors.
Note
Not al routines are affected by changes to the | CPU system variable. Those
routines that are affected can override some of the valuesin the |CPU system
variable by setting thread pool keywords, which change the way IDL usesthe
system processor(s) during a single invocation of the routine. A list of thread pool
keywords appears at the end of the keywords list for each routine that is affected by
the state of the !CPU system variable.
Syntax
CPU [, /RESET] [, RESTORE = structure] [, TPOOL_MAX_ELTS = NumMaxElts]|
[,TPOOL_MIN_ELTS = NumMinElts] [, TPOOL_NTHREADS = NumThreads]
[/VECTOR_ENABLE]
Arguments
None.
Keywords
RESET

Set this keyword to cause the CPU procedure to reset the values contained in the
ICPU system variable to the values it had when IDL was started. See “ Restoring
ICPU Values’ on page 386 for more information on thistopic. The RESET and
RESTORE keywords are mutually exclusive; only one of them can be specified in a

given call to CPU.

RESTORE

Set this keyword equal to a structure of type !CPU to set the !|CPU system variable
with the values contained in the structure. See “Restoring ! CPU Values’ on page 386
for more information on this topic. The RESET and RESTORE keywords are
mutually exclusive; only one of them can be specified in a given call to CPU.

CPU IDL Reference Guide

Chapter 3: Procedures and Functions 385

TPOOL_MAX_ELTS

This keyword changes the value returned by |CPU.TPOOL_MAX_ELTS.

Set this keyword to a non-zero value to set the maximum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation exceeds the number contained in |CPU.TPOOL_MAX_ELTS, IDL will
not use the thread pool for the computation. Setting this value to O removes any limit
on maximum number of elements, and any computation with at least
ICPU.TPOOL_MIN_ELTSwill use the thread pool.

See " Possible Drawbacks to the Use of the IDL Thread Pool” in Chapter 10 of the
Building IDL Applications manual for discussion of the circumstances under which it
may be useful to specify a maximum number of elements for computations that use
the thread pool.

TPOOL_MIN_ELTS

This keyword changes the value returned by 'CPU.TPOOL_MIN_ELTS.

Set this keyword to a non-zero value to set the minimum number of data elements
involved in a computation that uses the thread pool. If the number of elementsin the
computation is less than the number contained in 'CPU.TPOOL_MIN_ELTS, IDL
will not use the thread pool for the computation. Use this keyword to prevent IDL
from using the thread pool on tasks that are too small to benefit from it.

See " Possible Drawbacks to the Use of the IDL Thread Pool” in Chapter 10 of the
Building IDL Applications manual for discussion of the circumstances under which it
may be useful to specify a minimum number of elements for computations that use
the thread pool.

TPOOL_NTHREADS

This keyword changes the value returned by 'CPU.TPOOL_NTHREADS.

Set this keyword to the number of threads IDL should use when performing
computations that take advantage of the thread pool. By default, IDL will use
ICPU.HW_NCPU threads, so that each thread will have the potentia to runin
parallel with the others. Set this keyword equal to O (zero) to ensure that
ICPU.HW_NCPU threads will be used. Set this keyword equal to 1 (one) to disable
use of the thread pool.

IDL Reference Guide CPU

386

CPU

Chapter 3: Procedures and Functions

Note
For numerical computation, there is no benefit to using more threads than your
system has CPUs. However, depending on the size of the problem and the number
of other programs running on the system, there may be a performance advantage to
using fewer CPUs. See “ Possible Drawbacks to the Use of the IDL Thread Pool” in
Chapter 10 of the Building IDL Applications manual for a discussion of the
circumstances under which using fewer than the maximum number of CPUs makes
sense.

ICPU.TPOOL_NTHREADS s initialized with the value of the
IDL_CPU_TPOOL_NTHREADS preference at startup. On systems shared by
multiple users, you may wish to set this preference so that IDL uses the specified
number of threads instead of defaulting to the number of CPUs present in the
underlying hardware. For more information, see “!CPU Settings Preferences” in
Appendix E of the IDL Reference Guide manual.

VECTOR_ENABLE

This keyword changes the value returned by 'CPU.VECTOR_ENABLE.

Set this keyword to enable use of the system’s vector unit (e.g. Macintosh
Altivec/Velocity Engine) if oneis present. Set this keyword equal to O (zero)
explicitly disable such use. This keyword isignored if the current system does not
support avector unit (that is, if 'CPU.HW_VECTOR =0).

Restoring !CPU Values

It is sometimes necessary to alter the way IDL uses the system processor or
processors for a section of code, and then to restore IDL to the settings in effect
before the code section was executed. It is often possible to accomplish this using the
thread pool keywords to specific routines; in some circumstances, however, this
approach may be inconvenient or ineffective. For example:

e |f the section of code includes many routines for which alterations are
required, the repetition of the keywordsisinconvenient and error prone.

e Binary and unary operators that use the thread pool do not accept keywords.
» Thereisno keyword equivalent to the |CPU.VECTOR_ENABLE field.

» Futureversions of IDL may provide additional CPU options; adding keywords
to your code to invoke these options could pose maintenance problems.

¢ You may be working with IDL routines you did not write.

IDL Reference Guide

Chapter 3: Procedures and Functions 387

In all of these cases, the answer is to use the CPU procedure to alter the value of the
ICPU system variable to suit the needs of your code, execute the code, and then reset
ICPU to the state it had initially. It is possible to do this by using the individual
keywords to CPU, as shown below:

save_cpu = ! CPU ; Save the current configuration
CPU, TPOOL_NTHREADS=2, ... ; Change the current configuration
; Carry out a conputation
; Restore the CPU state
CPU, TPOOL_MAX_ELTS=save_cpu.tpool _max_elts, $
TPOOL_M N _ELTS=save_cpu.tpool _nin_elts, $
TPOCOL_NTHREADS=save_cpu. t pool _nt hr eads
There are two obvious problems with this approach: it is tedious and error prone, and
if new versions of IDL add new CPU attributes, your code will require updatesin
order to reset them.

The RESTORE keyword to CPU solves both of these problems. When a structure of
type !CPU is supplied using the RESTORE keyword, IDL adjusts the !CPU system
variable to match the structure. Using RESTORE, the above example becomes:

save_cpu = ! CPU
CPU, TPOOL_NTHREADS=2,

CPU RESTORE=save_cpu
The RESET keyword is similar to RESTORE, but it resets the |CPU system variable
to the values it had when IDL first started. The syntax is:

CPU, /RESET

The RESET keyword is useful in ad hoc analysis, when you've made changes to the
ICPU system variable manually (perhaps as an experiment), and you wish to bring
ICPU back to its default state for your machine without exiting and restarting IDL.

RESET and RESTORE are mutually exclusive — only one of them can be used in a
given call to the CPU procedure. However, they are allowed in conjunction with the
other keywords to CPU. In such cases, the explicit keywords take precedence over
the values from the RESET or RESTORE keywords. For example, the following
statement changes the number of threads used by the IDL thread pool to 3, and sets
all other CPU parameters to the values contained in avariable named save_cpu:

CPU, TPOOL_NTHREADS=3, RESTORE=save_cpu

IDL Reference Guide CPU

388 Chapter 3: Procedures and Functions

Example

Configure !CPU so that by default, IDL will use two threads for computations that
involve more than 5000 data val ues.

CPU, TPOOL_M N_ELTS=5000, TPOOL_NTHREADS=2

Version History

55 Introduced
6.1 Added RESET and RESTORE keywords
See Also

ICPU, Chapter 10, “Multithreading in IDL” in the Building IDL Applications manual .

CPU IDL Reference Guide

Chapter 3: Procedures and Functions 389

CRAMER

The CRAMER function solves an n by n linear system of equations using Cramer’s
rule.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cramer. pro inthel i b subdirectory of the IDL distribution.

Syntax
Result = CRAMER(A, B[, /DOUBLE] [, ZERO=value])
Return Value
Returns the solution of an n by n linear system of equations using Cramer’srule.
Arguments
A

Ann by nsingle- or double-precision floating-point array.

B

An n-element single- or double-precision floating-point vector.
Keywords
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
ZERO

Use this keyword to set the value of the floating-point zero. A floating-point zero on
the main diagonal of atriangular array resultsin azero determinant. A zero
determinant resultsin a“ Singular matrix” error and stops the execution of CRAMER.
For single-precision inputs, the default valueis 1.0 x 10°8. For double-precision
inputs, the default valueis 1.0 x 10712,

IDL Reference Guide CRAMER

390

Examples

Chapter 3: Procedures and Functions

Define an array A and right-hand side vector B.

A=[[2.0, 1.0, 1.0], $
[4.0, -6.0, 0.0], $
[-2.0, 7.0, 2.0]]

B =1[3.0, 10.0, -5.0]

; Conput e the solution and print.
PRI NT, CRAMER(A, B)

IDL prints:
1. 00000 -1. 00000 2.00000

Version History

Pre4.0 Introduced

See Also

CHOLSOL, GS ITER, LU_COMPLEX, LUSOL, SVSOL, TRISOL

CRAMER

IDL Reference Guide

Chapter 3: Procedures and Functions 391

CREATE_CURSOR

The CREATE_CURSOR function creates an image array from a string array that
represents a 16 by 16 cursor. The returned image array can be passed to the
REGISTER_CURSOR procedure Image argument. This allows you to quickly
design a cursor using asimple string array.

Syntax

Result = CREATE_CURSOR(SringArray [, HOTSPOT=variable]
[, MASK=variable])

Return Value

Trandates the input string array into an image that satisfies the Image argument of
the REGISTER_CURSOR procedure.

Arguments

StringArray

Thismust be a 16 element string array of 16 characters each that represents awindow
cursor. The array can consist of the "#" character, space and non-space characters,
and optionally, a"$" character asfollows:

« The"#"' characters define the black outline of the cursor.

* Any non-space characters define the shape of the white mask. Adding a mask
ensures the cursor’svisibility in light and dark areas of avisualization. Usethe
MASK keyword to return the array of masked out values.

e The"$" defines ahot spot. Use the HOTSPOT keyword to return the location
of this character within the string array.

Keywords

HOTSPOT
Set this keyword to avariable that will contain a two-element vector indicating the
location of the"$" character in the StringArray. Thisis considered to be the mouse

position of the cursor. If thereisno "$" present, then [0,0] isreturned. This variable
can be directly passed to the HOTSPOT keyword of REGISTER_CURSOR.

IDL Reference Guide CREATE_CURSOR

392 Chapter 3: Procedures and Functions

MASK

Set this keyword to return a 16 by 16 byte array containing any non-space characters,
which indicates the area to be masked out. This variable can be passed to the MASK
keyword of REGISTER_CURSOR.

Examples

The following code creates a simple cursor. Define a string array representing the
body and mask portions of the cursor. Notice the hotspot ("$") in the cursor structure.

strArray = [$
. #.

. #it#.

. HH#HH
H.OVH#D L H
CHE. L OH#H. L HE

' HHHRRH SHHH R
CHEL L H. LB
CHOUH# L H

. Wi,

. HH#H.

. #.

AR DA ARDPDP DD PHH D PP

' "]
cursor _i mage = CREATE_CURSOR(strArray, HOTSPOT=hotspot, MASK=nask)
REA STER_CURSOR, 'translate', cursor_image, HOTSPOT=hotspot, $
MASK=mask

After registering a cursor, you can set the current cursor using the
IDLgrWindow:: SetCurrentCursor method. The previous string resultsin the
following cursor.

H

Figure 3-28: String Array Translated into a Cursor

CREATE_CURSOR IDL Reference Guide

Chapter 3: Procedures and Functions 393

Version History

6.1 Introduced

See Also

REGISTER_CURSOR, IDLgrWindow::SetCurrentCursor,
IDLitManipulator::RegisterCursor, IDLitManipulator::GetCursor Type

IDL Reference Guide CREATE_CURSOR

394 Chapter 3: Procedures and Functions

CREATE_STRUCT

The CREATE_STRUCT function creates a structure given pairs of tag names and
values. CREATE_STRUCT can also be used to concatenate structures.

Syntax

Result = CREATE_STRUCT([Tagy, Values,, ..., Tag,, Values,] [, Structures,]
[, NAME=string])

or

Result = CREATE_STRUCT([Tags, Values,, ..., Values,| [, Sructures,]
[, NAME=string])

Return Value

Returns a structure composed of given pairs of tag hames and values.
Arguments

Tags

The structure tag names. Tag hames may be specified either as scalar strings or a
single string array. If scalar strings are specified, values alternate with the tag names.
If astring array is provided, values must still be specified individually. Tag names
must be enclosed in quotes. Tag names may not be IDL Reserved Words, and must
be unique within a given structure, although the same tag name can be used in more
than one structure. Tag names follow the rules of IDL identifiers: they must begin
with aletter; following characters can be letters, digits, or the underscore or dollar
sign characters; and case isignored.

Note
If atag name contains spaces, CREATE_STRUCT will replace the spaces with

underscores. For example, if you specify atag nameof ' my tag', thetag will be
created withthename' ny_t ag' .

Values

The values for the structure fields. The number of Values arguments must match the
number of Tags arguments (if tags are specified as scalar strings) or the number of
elements of the Tags array (if tags are specified asasingle array.)

CREATE_STRUCT IDL Reference Guide

Chapter 3: Procedures and Functions 395

Structures

One or more existing structure variables whose tags and values will be inserted into
the new structure. When concatenating structures in this manner, the following rules

apply:

« All tag names, whether specified via the Tags argument or in an existing
structure variable, must be unique.

* Names of named structures included viathe Structures arguments are not used
in the newly-created structure.

e Sructures arguments can be interspersed with groups of Tags and Values
argumentsin the call to CREATE_STRUCT. Use caution, however, to ensure
that the number of Tags and Values in each group are equal, to avoid inserting
astructure variable as the value of a single tag when you mean to include the
structure’s data as individual tags and values.

Keywords
NAME

To create anamed structure, set this keyword equal to a string specifying the
structure name. If this keyword is not present, an anonymous structure is created.
Structure names must begin with aletter; following characters can be letters, digits,
or the underscore or dollar sign characters; and case isignored.

If NAME is specified and no plain arguments (tags, values, or structures) are present,
then CREATE_STRUCT will return a structure of known type, either from IDL's
internal table of already known named structures or by locating the appropriate
__define.pro file for that structure in the current IDL search path (!PATH) and
executing it. Hence, the following IDL statements are equivalent:

Result = { nystruct }
Result = CREATE_STRUCT(NAME=' nystruct')

The CREATE_STRUCT version can be convenient in situations where the name of
the structure is computed at runtime, and the EXECUTE function is not available
(e.g., coderunning in the free IDL Virtual Machine environment, in which
EXECUTE is disallowed).

IDL Reference Guide CREATE_STRUCT

396 Chapter 3: Procedures and Functions

Examples

To create the anonymous structure { A: 1, B: ' xxx' } inthe variable P, enter:
p = CREATE_STRUCT(' A", 1, 'B, 'xxx')

To add thefields “FIRST” and “LAST” to the structure, enter the following:
p = CREATE_STRUCT(' FIRST', 0, p, 'LAST', 3)

The resulting structure contains{ FIRST: 0, A: 1, B: 'xxx', LAST: 3}.

Finally, consider the following statements:

sl = {Structl, Tagl:' AAA', Tag2:' BBB'}
s2 {Struct2, TagA: 100, TagB: 200}
s3 = CREATE_STRUCT(NAME=' Struct3', ["A,'B",'C], 1, 2, sl, s2)

Here, the variable s3 contains the following named structure:
{Struct3, A: 1, B: 2, C:{Structl, Tagl: 'AAA’, Tag2: 'BBB'}, TagA: 100, TagB: 200}

Note that the value of s3. Cisitself a“Structl” structure, since the structure variable
s1 wasinterpreted as a Values argument, whereas the structure variable s2 was
interpreted as a Sructures argument, thus including the tags from the “ Struct2”
structure directly in the new structure.

Version History

Pre4.0 Introduced
6.1 Added NAME keyword
See Also

IDL_VALIDNAME, N_TAGS, TAG_NAMES, Chapter 16, “ Structures’ in the
Building IDL Applications manual.

CREATE_STRUCT IDL Reference Guide

Chapter 3: Procedures and Functions 397

CREATE_VIEW

The CREATE_VIEW procedure sets the various system variables required to define a
coordinate system and a 3-D view. This procedure builds the system viewing matrix
('PT) in such away that the correct aspect ratio of the data is maintained even if the
display window is not square. CREATE_VIEW aso setsthe “Data’ to “Normal”
coordinate conversion factors (1X.S, !Y.S, and ! Z.S) so that center of the unit cube
will be located at the center of the display window.

CREATE_VIEW setsthe following IDL system variables:

IPT IX.S Y.S 1Z.S
IPT3D IX.Style Y. Style 1Z.Style
IPPosition IX.Range Y.Range I1Z.Range
IPClip IX.Margin I'Y.Margin 1Z.Margin
IPRegion

Thisroutineiswritten in the IDL language. Its source code can be found in the file
create_vi ew. prointhel i b subdirectory of the IDL distribution.

Syntax
CREATE_VIEW [, AX=valug] [, AY=valug] [, AZ=valug] [, PERSP=valu€]
[, IRADIANS] [, WINX=pixels] [, WINY =pixels] [, XMAX=scalar]
[, XMIN=scalar] [, YMAX=scalar] [, YMIN=scalar] [, ZFAC=valu€]
[, ZMAX=scalar] [, ZMIN=scalar] [, ZOOM=scalar or 3-element vector]
Arguments
This procedure has no required arguments.
Keywords
AX

A floating-point value specifying the orientation (X rotation) of the view. The default
is0.0.

IDL Reference Guide CREATE_VIEW

398

Chapter 3: Procedures and Functions

AY

A floating-point value specifying the orientation (Y rotation) of the view. The default
is0.0.

AZ

A floating-point value specifying the orientation (Z rotation) of the view. The default
is0.0.

PERSP

A floating-point value specifying the perspective projection distance. A value of 0.0
indicates an isometric projection (NO perspective). The default is 0.0.

RADIANS
Set this keyword if AX, AY, and AZ are specified in radians. The default is degrees.
WINX

A long integer specifying the X size, in pixels, of the window that the view isbeing
set up for. The default is 640.

WINY

A long integer specifying the Y size, in pixels, of the window that the view is being
set up for. The default is512.

XMAX

A scalar specifying the maximum data value on the X axis. The default is 1.0.
XMIN

A scalar specifying the minimum data value on the X axis. The default is 0.0.
YMAX

A scalar specifying the maximum datavalue onthe Y axis. The default is 1.0.
YMIN

A scalar specifying the minimum datavalue onthe Y axis. The default is 0.0.

CREATE_VIEW IDL Reference Guide

Chapter 3: Procedures and Functions 399

ZFAC

Set this keyword to afloating-point value to expand or contract the view in the Z
dimension. The default is 1.0.

ZMAX

A scalar specifying the maximum data value on the Z axis. The default is 1.0.
ZMIN

A scalar specifying the minimum data value on the Z axis. The default is 0.0.

Z00OM

A floating-point number or 3-element vector specifying the view zoom factor. If
zoom isasingle value then the view will be zoomed equally in all 3 dimensions. If
zoom is a 3-element vector then the view will be scaled zoom[Q] in X, zoom[1] inY,
and zoom[2] in Z. The default is 1.0.

Examples

Set up aview to display an iso-surface from volumetric data. First, create some data:

vol = FLTARR(40, 50, 30)
vol (3:36, 3:46, 3:26) = RANDOMK S, 34, 44, 24)
FOR | = 0, 10 DO vol = SMOOTH(vol, 3)

Generate the iso-surface.
SHADE_VOLUME, vol, 0.2, polygon_list, vertex_list, /LOWN

Set up the view. Note that the subscripts into the Vol array rangefrom 0to 39in X, 0
to49inY,and 0to 29in Z. Assuch, the 3-D coordinates of the iso-surface
(vertex_list) may have the sasmerange. Set XMIN, YMIN, and ZMIN to zero (the
default), and set XMAX=39, YMAX=49, and ZMAX=29.

W NDOW XSI ZE = 600, YSIZE = 400
CREATE_VI EW XMAX = 39, YMAX = 49, ZMAX = 29, $
AX = (-60.0), AZ = (30.0), WNX = 600, WNY = 400, $
ZOOM = (0.7), PERSP = (1.0)
Display the iso-surface in the specified view.

i mg = POLYSHADE(pol ygon_list, vertex_list, /DATA, /T3D)
TVSCL, ing

IDL Reference Guide CREATE_VIEW

400

Version History

Chapter 3: Procedures and Functions

Pre4.0 Introduced

See Also

SCALE3, T3D

CREATE_VIEW

IDL Reference Guide

Chapter 3: Procedures and Functions 401

CROSSP

The CROSSP function returns a vector that is the cross-product of two input vectors,
V1and V2.

Syntax
Result = CROSSP(V1, V2)
Return Value

Returns a floating-point vector that is the cross-product of two 3-element vectors, V1
and V2.

Arguments
V1, V2

Three-element vectors.

Version History

Original Introduced

See Also

“Matrix Operators’ in Chapter 12 of the Building IDL Applications manual.

IDL Reference Guide CROSSP

402 Chapter 3: Procedures and Functions

CRVLENGTH

The CRVLENGTH function computes the length of a curve with atabular
representation, Y[i] = F(X[i]).

Warning
Datathat is highly oscillatory requires a sufficient number of samplesfor an
accurate curve length computation.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
crvl engt h. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = CRVLENGTH(X, Y[, /DOUBLE])
Return Value

Returns the curve length.
Arguments

X

An n-element single- or double-precision floating-point vector. X must contain at
least three elements, and values must be specified in ascending order. Duplicate X
values will result in awarning message.

Y

An n-element single- or double-precision floating-point vector.
Keywords
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

CRVLENGTH IDL Reference Guide

Chapter 3: Procedures and Functions

Example

:Define a 21-el enent vector of X-val ues:

x = [-2.00, -1.50, -1.00, -0.50, 0.00, O.50,
2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50,
7.00, 7.50, 8.00]

:Define a 21-el enent vector of Y-val ues:

y =[-2.99, -2.37, -1.64, -0.84, 0.00, O.84,
3.48, 3.86, 4.14, 4.33, 4.49, 4.65, 4.85,
6.02, 6.64, 7.37]

; Compute the length of the curve:
result = CRVLENGTH(x, vY)

Print, result
IDL prints:
14.8115

Version History

403

2.00, $

2.99, $

5.0 Introduced

See Also

INT_TABULATED, PNT_LINE, “Curve and Surface Fitting” in Chapter 12 of the

Using IDL manual

IDL Reference Guide

CRVLENGTH

404 Chapter 3: Procedures and Functions

CT_LUMINANCE

The CT_LUMINANCE function calculates the luminance of colors.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
ct _lumi nance. pro inthel i b subdirectory of the IDL distribution.

Syntax

Result = CT_LUMINANCE([R, G, B] [, BRIGHT=variable] [, DARK=variable]
[,/READ_TABLES])

Return Value

The function returns an array containing the luminance values of the specified colors.
If the R, G, and B parameters are not specified, or if Ris of integer, byte or long type,
the result is alongword array with the same number of elements as the input
arguments. Otherwise, the result is a floating-point array with the same number of
elements as the input arguments.

Arguments
R

An array representing the red color table. If omitted, the color values from either the
COL ORS common block, or the current color table are used.

G

An array representing the green color table. This parameter is optional.

B

An array representing the blue color table. This parameter is optional.
Keywords

BRIGHT

Set this keyword to a named variable in which the array index of the brightest color is
returned.

CT_LUMINANCE IDL Reference Guide

Chapter 3: Procedures and Functions 405

DARK

Set this keyword to a named variable in which the array index of the darkest color is
returned.

READ_TABLES

Set this keyword, and don't specify the R, G, and B arguments, to read colors directly
from the current colortable (using TVLCT, /GET) instead of using the COLORS
common block.

Version History

Pre4.0 I ntroduced

See Also

GAMMA_CT, STRETCH

IDL Reference Guide CT_LUMINANCE

406 Chapter 3: Procedures and Functions

CTI_TEST

The CTI_TEST function constructs a “ contingency table” from an array of observed
frequencies and tests the hypothesis that the rows and columns are independent using
an extension of the chi-square goodness-of -fit test.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cti_test.prointhelib subdirectory of the IDL distribution.

Syntax

Result = CTI_TEST(Obfreq [, COEFF=variable] [, /CORRECTED]
[, CRAMV=variable] [, DF=variable] [, EXFREQ=variabl€]
[, RESIDUAL=variable])

Return Value

Returns a two-element vector containing the chi-square test statistic XZ and the one-
tailed probability of obtaining a value of Xz or greater.

Arguments

Obfreq

Anmx narray containing observed frequencies. Obfreq can contain either integer,
single-precision , double-precision floating-point values.

Keywords

COEFF

Set this keyword to a named variable that will contain the coefficient of contingency.
The coefficient of contingency is a non-negative scalar, in the interval [0.0, 1.0],
which measures the degree of dependence within a contingency table. The larger the
value of COEFF, the greater the degree of dependence.

CORRECTED

Set this keyword to use the Yate's correction for continuity” when computing the chi-
squared test statistic, XZ. The Yate's correction always decreases the magnitude of le
In general, this keyword should be set for small sample sizes.

CTI_TEST IDL Reference Guide

Chapter 3: Procedures and Functions 407

CRAMV

Set this keyword to a named variable that will contain Cramer’s V. Cramer'sV isa
non-negative scalar, in the interval [0.0, 1.0], which measures the degree of
dependence within a contingency table.

DF

Set this keyword to a named variable that will contain the number of degrees of
freedom used to compute the probability of obtaining the value of the chi-squared test
stetistic or greater. DF = (n- 1) * (m- 1) where mand n are the number of columns
and rows of the contingency table, respectively.

EXFREQ

Set this keyword to a named variable that will contain an array of m-columns and n-
rows containing expected frequencies. The elements of thisarray are often referred to
asthe “cells’ of the expected frequencies. The expected frequency of each cell is
computed as the product of row and column marginal frequencies divided by the
overall total of observed frequencies.

RESIDUAL

Set this keyword to a named variable that will contain an array of m-columns and n-
rows containing signed differences between corresponding cells of observed
frequencies and expected frequencies.

Examples

Define a5-column and 4-row array of observed frequencies.

obfreq = [[748, 821, 786, 720, 672], $
[74, 60, 51, 66, 50], $
[31, 25 22, 16, 15], $
[9 10, 6, 5 71

Test the hypothesis that the rows and columns of “obfreq” contain independent data
at the 0.05 significance level.

result = CTI_TEST(obfreq, COEFF = coeff)
The result should be the two-element vector [14.3953, 0.276181].

The computed value of 0.276181 indicates that there is no reason to reject the
proposed hypothesis at the 0.05 significance level. The coefficient of contingency
returned in the parameter “ coeff” (coeff = 0.0584860) also indicates the lack of

IDL Reference Guide CTI_TEST

408

Chapter 3: Procedures and Functions

dependence between the rows and columns of the observed frequencies. Setting the
CORRECTED keyword returns the two-element vector [12.0032, 0.445420] and
(coeff = 0.0534213) resulting in the same conclusion of independence.

Version History

Pre4.0

Introduced

See Also

CORRELATE, M_CORRELATE, XSQ TEST

CTI_TEST

IDL Reference Guide

Chapter 3: Procedures and Functions 409

CURSOR

The CURSOR procedureis used to read the position of the interactive graphics cursor
from the current graphics device. Note that not al graphics devices have interactive
cursors. CURSOR enables the graphic cursor on the device and optionally waits for
the operator to position it. On devices that have a mouse, CURSOR normally waits
until amouse button is pressed (or already down). If no mouse buttons are present,
CURSOR waits for a key on the keyboard to be pressed. The X and Y arguments are
named variables that receive the cursor position. Normally, the position is reported in
data coordinates, but the DATA, DEVICE, and NORMAL keywords can be used to
explicitly specify the coordinate system.

When CURSOR returns, the but t on field of the system variable IMOUSE is set to
the button status. Each mouse button is assigned a bit in the button field.Bit O isthe
leftmost button (value = 1), bit 1 isthe middle button (value = 2), and bit 3isthe
rightmost button (value = 4) for the typical three-button mouse. See “!MOUSE” on
page 5035 for details.

Avoid Using CURSOR with Draw Widgets

Note that the CURSOR procedureis only for use with IDL direct graphics windows.
It should not be used with draw widgets. To obtain the cursor position and button
state information from a draw widget, set the BUTTON_EVENTS and
MOTION_EVENTS keywords to WIDGET _DRAW, and examine the X, Y, PRESS,
and RELEASE fields in the structures returned by the draw widget in response to
cursor events. See WIDGET_DRAW for more information.

Using CURSOR with the TEK Device

Note that for the CURSOR procedure to work properly with Tektronix terminals, you
may need to execute the command, DEVI CE, G N_CHARS=6.

Syntax

CURSOR, X, Y[, Wait | [, /CHANGE |, [IDOWN |, INOWAIT |, /UP |, /WAIT]]
[, /IDATA |, /DEVICE, |, INORMAL]

Arguments

X

A named variable to receive the cursor’s current column position.

IDL Reference Guide CURSOR

410 Chapter 3: Procedures and Functions

Y
A named variable to receive the cursor’s current row position.
Wait

An integer that specifies the conditions under which CURSOR returns. This
parameter can be used interchangeably with the keyword parameterslisted bel ow that
specify the type of wait. The default valueis 1. The table below describes each type
of wait.

Note that not all modes of waiting work with all display devices.

Wait Corresponding :
Value Keyword aslel
0 NOWAIT Return immediately.
1 WAIT Return if abutton is down.
2 CHANGE Returnif abutton is pressed, released, or
the pointer is moved.
3 DOWN Return when a button down transition is
detected.
4 UP Return when a button up transition is
detected.

Table 3-11: Values for CURSOR Wait Parameter
Keywords
CHANGE

Set this keyword to wait for pointer movement or button transition within the
currently selected window.

DATA
Set this keyword to return X and Y in data coordinates.
DOWN
Set this keyword to wait for a button down transition within the currently selected

window.

CURSOR IDL Reference Guide

Chapter 3: Procedures and Functions 411

DEVICE

Set this keyword to return X and Y in device coordinates.
NORMAL

Set this keyword to return X and Y in normalized coordinates.
NOWAIT

Set this keyword to read the pointer position and button status and return
immediately. If the pointer is not within the currently selected window, the device
coordinates -1, -1 are returned.

UP
Set this keyword to wait for a button up transition within the current window.

WAIT

Set this keyword to wait for a button to be depressed within the currently selected
window. If abutton is already pressed, return immediately.

Examples

Activate the graphics cursor, select a point in the graphics window, and return the
position of the cursor in device coordinates. Enter:

CURSOR, X, Y, /DEVICE

Move the cursor over the graphics window and press the mouse button. The position
of the cursor in device coordinates is stored in the variables X and Y. To label the
location, enter:

XYQUTS, X, Y, 'X marks the spot.', /DEVICE

The following two programs demonstrate simple applications of the interactive
graphics cursor and the CURSOR procedure.

Thefirst routine is a simple drawing program. Straight lines are connected to
positions marked with the left or middle mouse buttons until the right button is
pressed.

PRO DRAW
Start with a blank screen:
ERASE
Get the initial point in normalized coordinates:
CURSOR, X, Y, /NORMAL, /DOMN

IDL Reference Guide CURSOR

412 Chapter 3: Procedures and Functions

; Repeat until right button is pressed. Get the second point.
; Draw the line. Make the current second point be the new first.
VWHI LE (! MOUSE. button NE 4) DO BEG N
CURSOR, X1, Y1, /NORM [/ DOWN
PLOTS, [X, X1], [V, Y1], /NORNAL
X=X1L &Y =Yl
ENDVWHI LE
END

The second simple procedure can be used to label plots using the cursor to position
the text:

; Text is the string to be witten on the screen:
PRO LABEL, TEXT
; Ask the user to mark the position:
PRI NT, 'Use the nouse to mark the text position:'
; Get the cursor position after pressing any button:
CURSOR, X, Y, /NORWVAL, /DOMWN
; Wite the text at the specified position.
; The NOCLIP keyword is used to ensure that
; the text will appear even if it is outside
the plotting region.
XYQUTS, X, Y, TEXT, /NORMAL, /NOCLIP
END

At the command line, set TEXT equal to the string of text you want to appear in the
window. For example, enter,

Text = 'My Sanple Text'

Compile and run the program by entering the following at the command line, passing
your text string to the procedure:

LABEL, TEXT

Next, move the pointer device to the desired spot in the window and click the locator
button. Consider how you might augment the LABEL procedure to alow you to
specify the size and font of the annotation text.

Note
Also see " Cropping Images’ in Chapter 2 of the Image Processing in IDL manual
for an example that uses the CURSOR function to extract a rectangular region of
interest from an image.

CURSOR IDL Reference Guide

Chapter 3: Procedures and Functions 413

Version History

Origind Introduced

See Also

RDPIX, TVCRS, CURSOR_CROSSHAIR (and other CURSOR_ keywords),
WIDGET_DRAW, “IMOUSE” on page 5035

IDL Reference Guide CURSOR

414 Chapter 3: Procedures and Functions

CURVEFIT

The CURVEFIT function uses a gradient-expansion algorithm to compute a non-
linear least squares fit to a user-supplied function with an arbitrary number of
parameters. The user-supplied function may be any non-linear function where the
partial derivatives are known or can be approximated. Iterations are performed until
the chi square changes by a specified amount, or until a maximum number of
iterations have been performed.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
curvefit.prointheli b subdirectory of the IDL distribution.

Syntax

Result = CURVEFIT(X, Y, Weights, A[, Sgma] [, CHISQ=variable] [, /DOUBLE]
[, FITA=vector] [, FUNCTION_NAME=string] [, ITER=variable]
[, ITMAX=value] [, /NODERIVATIVE] [, STATUS={0|1|2}] [, TOL=value]
[, YERROR=variable])

Return Value

Returns a vector of values for the dependent variables, as fitted by the function fit. If
Aisdouble-precision or if the DOUBLE keyword is set, calculations are performed
in double-precision arithmetic, otherwise they are performed in single-precision
arithmetic.

Arguments

X
An n-element vector of independent variables.
Y

A vector of dependent variables. Y must have the same number of elementsasF
returned by the user-defined function.

Weights

For instrumental (Gaussian) weighting, set Weights; = 1.0/standard_deviati on(Yi)z.
For statistical (Poisson) weighting, Weights; = 1.0/Y;. For no weighting, set

CURVEFIT IDL Reference Guide

Chapter 3: Procedures and Functions 415

Weights; = 1.0. If Weightsiis set to an undefined variable then no weighting will be
used.

A

A vector with as many elements as the number of termsin the user-supplied function,
containing theinitial estimate for each parameter. On return, the vector A containsthe

fitted model parameters.
Sigma

A named variable that will contain avector of standard deviations for the e ements of
the output vector A.

Note
If Weightsis omitted, then you are assuming that your supplied model is the correct

model for your data, and therefore, no independent goodness-of-fit test is possible.
In this case, the values returned for the Sgma argument are multiplied by
SQRT(CHISQ/(N*M)), where N is the number of pointsin X, and M is the number
of coefficients. See Section 15.2 of Numerical Recipesin C (Second Edition) for

details.

Keywords

CHISQ

Set this keyword to a named variable that will contain the value of the reduced chi-
square goodness-of-fit statitic.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

FITA

Set this keyword to avector, with as many elements as A, which contains a zero for
each fixed parameter, and a non-zero value for elements of Ato fit. If not supplied, all
parameters are taken to be non-fixed.

FUNCTION_NAME

Use this keyword to specify the name of the function to fit. If this keyword is omitted,
CURVEFIT assumes that the IDL procedure FUNCT isto be used. If FUNCT is not
already compiled, IDL compilesthefunction from thefilef unct . pr o, located in the

IDL Reference Guide CURVEFIT

416

CURVEFIT

Chapter 3: Procedures and Functions

|'i b subdirectory of the IDL distribution. FUNCT evaluates the sum of a Gaussian and
a second-order polynomial.

The function to be fit must be written as an IDL procedure and compiled prior to
calling CURVEFIT. The procedure must accept values of X (the independent
variable), and A (the fitted function’sinitial parameter values). It must return values
for F (the function’s value at X), and optionally PDER (a 2D array of partial
derivatives).

Thereturn value for F must have the same number of elementsas Y. The return value
for PDER (if supplied) must be a 2D array with dimensions
[N_ELEMENTS(Y), N_ELEMENTS(A)].

See the Exampl e section below for an example function.

ITER

Set this keyword equal to a named variable that will contain the actual number of
iterations performed.

ITMAX

Set this keyword to specify the maximum number of iterations. The default valueis
20.

NODERIVATIVE

If this keyword is set, the routine specified by the FUNCTION_NAME keyword will
not be requested to provide partial derivatives. The partial derivatives will be
estimated by CURVEFIT using forward differences. If analytical derivatives are
available they should always be used.

STATUS

Set this keyword to a named variable that will contain an integer indicating the status
of the computation. Possible return values are:

0 The computation was successful.
1 The computation failed. Chi-square was increasing without bounds.
2 The computation failed to converge in ITMAX iterations.

IDL Reference Guide

Chapter 3: Procedures and Functions 417

TOL

Use this keyword to specify the desired convergence tolerance. The routine returns
when the relative decrease in chi-squared isless than TOL in oneiteration. The
default valueis 1.0 x 1073,

YERROR

Set this keyword to a named variable that will contain the standard error between
YFITand Y.

Examples

Fit afunction of theformF(x) = a * exp(b*x) + c tosample pairs contained
inarrays X and Y. The partial derivatives are easily computed symbolically:

df/da = EXP(b*x)
df/db = a * x * EXP(b*X)
df/dc = 1.0

First, define a procedureto return F(x) and the partial derivatives, given X. Note that
A isan array containing thevaluesa, b, and c.

PRO gfunct, X, A F, pder
bx = EXP(A[1] * X)
F=A0 * bx + Al 2]

;1f the procedure is called with four paraneters, calculate the
;partial derivatives.
IF N_PARAMS() GE 4 THEN $
pder = [[bx], [AIO] * X * bx], [replicate(1.0, N ELEMENTS(X))]]
END

Compute the fit to the function we have just defined. First, define the independent
and dependent variables:

FLOAT(| NDGEN(10))
[12.0, 11.0, 10.2, 9.4, 8.7, 8.1, 7.5, 6.9, 6.5, 6.1]

X
Y

; Define a vector of weights.
weights = 1.0/Y

;Provide an initial guess of the function’s paraneters.
A =1[10.0,-0.1,2.0]

; Conput e the paraneters.
yfit = CURVEFIT(X, Y, weights, A SIGVA FUNCTI ON NAVE=' gf unct')

IDL Reference Guide CURVEFIT

418 Chapter 3: Procedures and Functions

;Print the paraneters returned in A

PRI NT, 'Function paraneters: ', A
IDL prints:
Functi on paraneters: 9.91120 -0.100883 2.07773

Thus, the function that best fits the dataiis:
f (x) = 9.91120(e % 100883 4 2 07773

Version History

Pre4.0 Introduced

5.6 Added YERROR keyword

6.0 Added FITA and STATUS keywords
See Also

COMFIT, GAUSS2DFIT, GAUSSFIT, LMFIT, POLY_FIT, REGRESS, SFIT,
SVDHIT, “Curve and Surface Fitting” in Chapter 12 of the Using IDL manual

CURVEFIT IDL Reference Guide

Chapter 3: Procedures and Functions 419

CV_COORD

The CV_COORD function converts 2D and 3D coordinates between the rectangular,
polar, cylindrical, and spherical coordinate systems.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cv_coord. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = CV_COORD([, /DEGREES] [, /DOUBLE] [, FROM_CYLIN=cyl_coords|
, FROM_POLAR=pol_coords |, FROM_RECT=rect_coords |
, FROM_SPHERE=sph _coords] [, /TO_CYLIN|,/TO_POLAR|,/TO_RECT |
, ITO_SPHERE])

Return Value

If the value specified in the “FROM " keyword is double precision, or if the
DOUBLE keyword is set, then al calculations are performed in double precision and
the returned value is double precision. Otherwise, single precision is used. If none of
the “FROM " keyword are specified, O isreturned. If none of the“TO_" keywords
are specified, the input coordinates are returned.

Arguments

This function has no required arguments. All datais passed in via keywords.
Keywords
DEGREES

If set, then the input and output coordinates are in degrees (where applicable).
Otherwise, the angles arein radians.

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.
FROM_CYLIN

A vector of the form [angle, radius, Z], or a(3, n) array of cylindrical coordinatesto
convert.

IDL Reference Guide CV_COORD

420

Chapter 3: Procedures and Functions

FROM_POLAR
A vector of the form [angle, radius], or a (2, n) array of polar coordinates to convert.
FROM_RECT

A vector of theform[x, y] or [X, Y, Z], or a(2, n) or (3, n) array containing rectangular
coordinates to convert.

FROM_SPHERE

A vector of the form [longitude, latitude, radius], or a (3, n) array of spherical
coordinates to convert.

TO_CYLIN

If set, cylindrical coordinates are returned in avector of the form [angle, radius, Z], or
a(3, n) array.

TO_POLAR

If set, polar coordinates are returned in avector of theform [angle, radius], or a(2, n)
array.

TO_RECT

If set, rectangular coordinates are returned in avector of theform [x, y] or [X, Y, Z], or
a(2,n)or (3, n)aray.

TO_SPHERE

If set, spherical coordinates are returned in a vector of the form [longitude, |atitude,
radiug], or a (3, n) array.

Examples

Convert from spherical to cylindrical coordinates:

sph_coord = [[45.0, -60.0, 10.0], [0.0, 0.0, 0.0]]
rect _coord = CV_COORD(FROM SPHERE=sph_coord, /TO _CYLIN, /DEGREES)

Convert from rectangular to polar coordinates:

rect_coord = [10.0, 10.0]
pol ar _coord = CV_COORD(FROM RECT=r ect _coord, /TO POLAR)

CV_COORD IDL Reference Guide

Chapter 3: Procedures and Functions 421

Version History

Pre4.0 Introduced

See Also

CONVERT_COORD, COORD2TO3, CREATE_VIEW, SCALE3, T3D

IDL Reference Guide CV_COORD

422 Chapter 3: Procedures and Functions

CVTTOBM

The CVTTOBM function converts a byte array in which each byte represents one
pixel into a“bitmap byte array” in which each bit represents one pixel. Thisis useful
when creating bitmap labels for buttons created with the WIDGET_BUTTON
function.

Most of IDL’simage file format reading functions (READ_BMP, READ_PICT, etc.)
return a byte array which must be converted before use as a button label. Note that
thereisone exception to thisrule; the READ_X11 BITMAP routine returns abitmap
byte array that needs no conversion before use.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cvttobm prointheli b subdirectory of the IDL distribution.

Note
IDL supports color bitmaps for button labels. The IDL GUIBUilder has a Bitmap
Editor that allows you to create color bitmaps for button labels. The BITMAP
keyword to WIDGET _BUTTON specifies that the button label is a color bitmap.

Syntax
Result = CVTTOBM(Array [, THRESHOL D=value{ 0 to 255}])

Return Value
Returns a bitmap byte array. Bitmap byte arrays are monochrome; by default,
CVTTOBM converts pixelsthat are darker than the median value to black and pixels
that are lighter than the median value to white. You can supply a different threshold
value viathe THRESHOLD keyword.

Arguments

Array
A 2-dimensional pixel array, one byte per pixel.

CVTTOBM IDL Reference Guide

Chapter 3: Procedures and Functions 423

Keywords

THRESHOLD

A byte value (or an integer value between 0 and 255) to be used as a threshold value
when determining if a particular pixel isblack or white. If THRESHOLD is not
specified, the threshold is calculated to be the average of the input array.

Examples

The following example creates a bitmap button label from a byte array:

; Create a byte array:

i mge = BYTSCL(DI ST(100))

; Create a widget base:
base = W DGET_BASE(/ COLUWN)

; Use CVTTOBM to create a bitmap byte array for a button |abel:
button = WDGET_BUTTON(base, VALUE = CVTTOBM i mage))

Real i ze the wi dget:
W DGET_CONTROL, base, /REALIZE

Version History

5.0 I ntroduced

See Also

WIDGET_BUTTON, XBM_EDIT, “Using the Bitmap Editor” in Chapter 29 of the
Building IDL Applications manual.

IDL Reference Guide CVTTOBM

424 Chapter 3: Procedures and Functions

CW_ANIMATE

The CW_ANIMATE function creates a compound widget that— along with its
associated routines — displays an animated sequence of images using off-screen
windows knows as pixmaps. The speed and direction of the display can be adjusted
using the widget interface.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_ani mat e. pro inthel i b subdirectory of the IDL distribution.

Using CW_ANIMATE

Unlike XINTERANIMATE, using the CW_ANIMATE widget requires callsto two
separate procedures, CW_ANIMATE_LOAD and CW_ANIMATE_RUN, to load the
images to be animated and to run the animation. Alternatively, you can supply a
vector of pre-existing pixmap window |Ds, eliminating the need to use
CW_ANIMATE_LOAD. The vector of pixmapsis commonly obtained from acall to
CW_ANIMATE_GETP applied to a previous animation widget. Once the images are
loaded, they are displayed by copying the images from the pixmap or buffer to the
visible draw widget.

See the documentation for CW_ANIMATE_LOAD, CW_ANIMATE_RUN, and
CW_ANIMATE_GETP for more information.

The only event returned by CW_ANIMATE indicates that the user has clicked on the
“End Animation” button. The parent application should use thisas asignal to kill the
animation widget viaWIDGET_CONTROL. When the widget is destroyed, the
pixmaps used in the animation are destroyed as well, unless they were saved by acall
to CW_ANIMATE_GETP.

See the animation widget's help file (available by clicking the “Help” button on the
widget) for more information about the widget's controls.

CW_ANIMATE IDL Reference Guide

Chapter 3: Procedures and Functions 425

Note
Three routines associated with the CW_ANIMATE compound widget —
CW_ANIMATE_GETP, CW_ANIMATE_LOAD, and CW_ANIMATE_RUN —
do not create compound widgets themselves, but act on an existing CW_ANIMATE
widget.

Syntax

Result = CW_ANIMATE(Parent, Szex, Szey, Nframes [, /NO_KILL]
[, OPEN_FUNC=string] [, PIXMAPS=vector] [, TAB_MODE=value]
[, /TRACK] [, UNAME=string] [, UVALUE=valug])

Return Value
This function returns the widget ID of the newly-created animation widget.
Arguments

Parent

The widget ID of the parent widget.
Sizex

The width of the displayed image, in pixels.
Sizey

The height of the displayed image, in pixels
Nframes

The number of frames in the animation sequence.
Keywords
NO_KILL

Set this keyword to omit the “End Animation” button from the animation widget.

IDL Reference Guide CW_ANIMATE

426 Chapter 3: Procedures and Functions

OPEN_FUNC

Set this keyword equal to a scalar string specifying the name of a user-written
function that loads animation data. If afunction is specified, an “Open ...” buttonis
added to the animation widget.

PIXMAPS

Use this keyword to provide the animation widget with a vector of pre-existing
pixmap (off screen window) IDs. This vector is usually obtained from acall to
CW_ANIMATE_GETP applied to a previous animation widget.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It is not possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “ Inheriting the TAB_MODE Value’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-12: TAB_MODE Keyword Options

CW_ANIMATE IDL Reference Guide

Chapter 3: Procedures and Functions 427

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

TRACK

Set this keyword to cause the frame dlider to track the frame number of the currently-
displayed frame.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE
The “user value’ to be assigned to the widget.
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See * Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

IDL Reference Guide CW_ANIMATE

428 Chapter 3: Procedures and Functions

Widget Events Returned by the CW_ANIMATE Widget

The only event returned by this widget indicates that the user has pressed the DONE
button. The parent application should use thisasa signal to kill the animation widget
viaWIDGET_CONTROL.

Examples

Assume the following event handler procedure exists:

PRO EHANDLER, EV
W DGET_CONTROL, /DESTROY, EV.TOP
end

Tip
If you wish to create this event handler starting from the IDL command prompt,
remember to begin with the. RUN command.

Enter the following commands to open the file ABNORM DAT (a series of images of a
human heart) and load the images it containsinto an array H.

OPENR, 1, FILEPATH(' abnormdat', SUBDIR = ['exanples', 'data'])
H = BYTARR(64, 64, 16)

READU, 1, H

CLCSE, 1

H = REBIN(H, 128, 128, 16)

Create an instance of the animation widget and |oad the frames. Note that because the
animation widget is realized before the call to CW_ANIMATE_LOAD, the frames
are displayed asthey are loaded. This provides the user with an indication of how
things are progressing.

base = W DGET_BASE(TI TLE = ' Ani mati on Wdget')

ani mate = CW ANl MATE(base, 128, 128, 16)

W DGET_CONTROL, [/ REALI ZE, base

FOR 1 =0, 15 DO CW ANl MATE_LQAD, ani mate, FRAME=l, | MAGE=H]*,*, 1]

Save the pixmap window IDs for future use:
CW ANl MATE_GETP, ani nmate, pixmap_vect
Start the animation:

CW ANI MATE_RUN, ani mat e
XMANAGER, ' CW ANI MATE Denp', base, EVENT_HANDLER = ' EHANDLER

CW_ANIMATE IDL Reference Guide

Chapter 3: Procedures and Functions 429

Pressing the “End Animation” button kills the application.

‘i XInteranimate E |J|

&/ & 2

Animation Speed:

Frames/Sec: 0.0

]

Animation Frame:

L
_| Active Slider

End Animation
Colors..
write MPEG

] Help

Figure 3-29: The animation interface created by CW_ANIMATE

Version History

Pre4.0

Introduced

6.1

Added TAB_MODE keyword

See Also

CW_ANIMATE_LOAD, CW_ANIMATE_RUN, CW_ANIMATE_GETP,
XINTERANIMATE

IDL Reference Guide

CW_ANIMATE

430 Chapter 3: Procedures and Functions

CW_ANIMATE_GETP

The CW_ANIMATE_GETP procedure gets a copy of the vector of pixmap window
IDs being used by a CW_ANIMATE animation widget. If thisroutineis called,
CW_ANIMATE does not destroy the pixmaps when it is destroyed. You can then
provide the pixmaps to alater instance of CW_ANIMATE to re-use them, skipping
the pixmap creation and rendering step (CW_ANIMATE_LOAD).

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequencesin most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_ani mat e. pro inthel i b subdirectory of the IDL distribution.

Syntax
CW_ANIMATE_GETP, Widget, Pixmaps|[, /KILL_ANYWAY]
Arguments
Widget

The widget 1D of the animation widget (created with CW_ANIMATE) that contains
the pixmaps.

Pixmaps

A named variable that will contain a vector of the window IDs of the pixmap
windows.

Keywords

KILL_ANYWAY

Set this keyword to ensure that the pixmaps are destroyed anyway when
CW_ANIMATE exits, despite the fact that CW_ANIMATE_GETP has been called.

CW_ANIMATE_GETP IDL Reference Guide

Chapter 3: Procedures and Functions 431

Example
See“CW_ANIMATE” on page 424.

Version History

Pre4.0 Introduced

See Also

CW_ANIMATE, CW_ANIMATE_LOAD, CW_ANIMATE_RUN,
XINTERANIMATE

IDL Reference Guide CW_ANIMATE_GETP

432 Chapter 3: Procedures and Functions

CW_ANIMATE_LOAD

The CW_ANIMATE_LOAD procedure creates an array of pixmapswhich areloaded
intoaCW_ANIMATE compound widget.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequencesin most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_ani mat e. pro inthel i b subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_LOAD, Wdget [, /CYCLE] [, FRAME=value{ 0 to NFRAMES}]
[, IMAGE=value] [, /ORDER] [, WINDOW=[window_num [, X0, YO, &, Syl]]
[, XOFFSET=pixds] [, YOFFSET=pixelg]

Arguments

Widget

Thewidget ID of the animation widget (created with CW_ANIMATE) into which the
image should be loaded.

Keywords

CYCLE

Set this keyword to cause the animation to cycle. Normally, frames are displayed
going either forward or backward. If CY CLE is set, the animation reverses direction
after the last frame in either direction is displayed.

FRAME

The frame number to be loaded. Thisis avaue between 0 and NFRAMES. If not
supplied, frame 0 is loaded.

CW_ANIMATE_LOAD IDL Reference Guide

Chapter 3: Procedures and Functions 433

IMAGE
The image to be loaded. IMAGE can either be a 2D or a 3D (24-bit) image.
ORDER

Set this keyword to display images from the top down instead of the default bottom
up. This keyword is only used when loading images with the IMAGE keyword.

WINDOW

When this keyword is specified, an image is copied from an existing window to the
animation pixmap. Under some windowing systems, this technique is much faster
than reading from the display and then loading with the IMAGE keyword.

The value of this parameter is either an IDL window number (in which case the entire
window is copied), or avector containing the window index and the rectangul ar
bounds of the areato be copied. For example:

W NDOW = [W ndow_Nunber, X0, YO, Sx, Sy]
XOFFSET

The horizontal offset, in pixels from the left of the frame, of the image in the
destination window.

YOFFSET

The vertical offset, in pixels from the bottom of the frame, of the image in the
destination window.

Example

See the documentation for CW_ANIMATE for an example using this procedure.
Note that if the widget isrealized before callsto CW_ANIMATE_LOAD, the frames
are displayed as they are loaded.

Version History

Pre4.0 I ntroduced

IDL Reference Guide CW_ANIMATE_LOAD

434 Chapter 3: Procedures and Functions

See Also

CW_ANIMATE, CW_ANIMATE_GETP, CW_ANIMATE_RUN,
XINTERANIMATE

CW_ANIMATE_LOAD IDL Reference Guide

Chapter 3: Procedures and Functions 435

CW_ANIMATE_RUN

The CW_ANIMATE_RUN procedure displays a series of images that have been
loaded into a CW_ANIMATE compound widget by acall to
CW_ANIMATE_LOAD.

CW_ANIMATE provides the graphical interface used by the XINTERANIMATE
procedure, which is the preferred routine for displaying animation sequences in most
situations. Use this widget instead of XINTERANIMATE when you need to run
multiple instances of the animation widget simultaneously. Note that if more than one
animation widget is running, they will have to share resources and will display
images more slowly than a single instance of the widget.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_ani mat e. pro inthel i b subdirectory of the IDL distribution.

Syntax

CW_ANIMATE_RUN, Widget [, Rate{ 0 to 100}] [, NFRAMES=valug] [, /STOP|
Arguments

Widget

The widget 1D of the animation widget (created with CW_ANIMATE) that will
display the animation.

Rate

A value between 0 and 100 that represents the speed of the animation as a percentage
of the maximum display rate. The fastest animation has avalue of 100 and the
slowest has avalue of 0. The default animation rate is 100.

The animation rate can also be adjusted after the animation has begun by changing
the value of the “Animation Speed” dlider.

Keywords
NFRAMES

Set this keyword equal to the number of frames to animate. This number must be less
than or equal to the Nframes argument to CW_ANIMATE.

IDL Reference Guide CW_ANIMATE_RUN

436 Chapter 3: Procedures and Functions
STOP
If this keyword is set, the animation is stopped.
Example
See“CW_ANIMATE” on page 424.

Version History

Pre4.0 Introduced

See Also

CW_ANIMATE, CW_ANIMATE_GETP, CW_ANIMATE_LOAD,
XINTERANIMATE

CW_ANIMATE_RUN IDL Reference Guide

Chapter 3: Procedures and Functions 437

CW_ARCBALL

The CW_ARCBALL function creates a compound widget for intuitively specifying
three-dimensional orientations.

The user drags a simulated track-ball with the mouse to interactively obtain arbitrary
rotations. Sequences of rotations may be cascaded. The rotations may be
unconstrained (about any axis), constrained to the view X, Y, or Z axes, or
constrained to the object’'s X, Y, or Z axis.

Thiswidget is based on “ARCBALL: A User Interface for Specifying Three-
Dimensional Orientation Using aMouse,” by Ken Shoemake, Computer Graphics
Laboratory, University of Pennsylvania, Philadelphia, PA 19104.

Thiswidget can generate any rotation about any axis. Note, however, that not all
rotations are compatible with the IDL SURFACE procedure, which is restricted to
rotations that project the object Z axis parallel to the view Y axis.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_archal | . prointhel i b subdirectory of the IDL distribution.

Using CW_ARCBALL
Use the command:
W DGET_CONTROL, id, GET _VALUE = matrix
to return the current 3x3 rotation matrix in the variable mat ri x.

You can set the arcball to new rotation matrix using the command:
W DGET_CONTROL, id, SET_VALUE = matrix
after the widget isinitially realized.
Syntax
Result = CW_ARCBALL(Parent [, COLORS=array] [, /[FRAME]
[, LABEL=string] [, RETAIN={0|1]|2}] [, SIZE=pixels] [, TAB_MODE=value]
[, /UPDATE] [, UNAME=string] [, UVALUE=value] [, VALUE=array])

Return Value

This function returns the widget ID of the newly-created ARCBALL widget.

IDL Reference Guide CW_ARCBALL

438

Arguments

Parent

Chapter 3: Procedures and Functions

The widget 1D of the parent widget.

Keywords
COLORS

A 6-element array containing the color indices to be used:

CoalorgQ]

View axis color

Colorg 1]

Object axis color

Colord2]

XZ plane +Y side (body top) color

Colorg 3]

Y Z plane (fin) color

Colorg 4]

XZ plane -Y side (body bottom)

Colorg[5]

Background color

For devices that are using indexed color (i.e., DECOMPOSED=0), the default value
for COLORSIis[1, 7, 2, 3, 7, 0] , which yields good colors with the TEK_COLOR
table: (white, yellow, red, green, yellow, black). For devices that are using
decomposed color (i.e., DECOMPOSED=1), the default value is an array of
corresponding decomposed (rather than indexed) colors: (white, yellow, red, green,

yellow, black).

For more information on decomposed color, refer to the DECOMPOSED keyword to

the DEVICE routine.

FRAME

Set this keyword to draw aframe around the widget.

LABEL

Set this keyword to a string containing the widget's label.

CW_ARCBALL

IDL Reference Guide

Chapter 3: Procedures and Functions 439

Note
You can use language catal ogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

RETAIN

Set this keyword to zero, one, or two to specify how backing store should be handled
for the draw widget. RETAIN=0 specifies no backing store. RETAIN=1 requests that
the server or window system provide backing store. RETAIN=2 specifiesthat IDL
provide backing store directly. See “Backing Store” on page 4954 for details.

SIZE

The size of the square drawable area containing the arcball, in pixels. The default is
192.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_ MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Vaue’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-13: TAB_MODE Keyword Options

IDL Reference Guide CW_ARCBALL

440 Chapter 3: Procedures and Functions

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

UPDATE

Set this keyword to cause the widget will send an event each time the mouse button is
released after a drag operation. By default, events are only sent when the “ Update”
button is pressed.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE
The “user value” to be assigned to the widget.
VALUE

Set this keyword to a3 x 3 array that will be the initial value for the rotation matrix.
VALUE must be avalid rotation matrix (no tranglation or perspective) where
TRANSPOSE(VALUE) = INVERSE(VALUE). This can be the upper-left corner of
IPT after executing the command

T3D, /RESET, ROTATE = [x,vY, z].
The default is the identity matrix.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywordsto the

CW_ARCBALL IDL Reference Guide

Chapter 3: Procedures and Functions 441

WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the 3 x 3 rotation matrix in the arcball widget.

See “ Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ARCBALL
Widget

Archall widgets generate event structures with the following definition:
event = {ID: OL, TOP:0OL, HANDLER OL, VALUE:fltarr(3,3) }
The VALUE field contains the 3 x 3 array representing the new rotation matrix.

Examples
See the procedure ARCBALL_TEST, contained inthecw_ar cbal | . pr o file. To test

CW_ARCBALL, enter the following commands:

. RUN cw_archbal |
ARCBALL_TEST

Thisresultsin the following:

Constraint: Mone |

Updatel Resetl Helpl

Figure 3-30: The CW_ARCBALL widget.

IDL Reference Guide CW_ARCBALL

442

Version History

Chapter 3: Procedures and Functions

Pre4.0

I ntroduced

6.1

Added TAB_MODE keyword

See Also

CREATE_VIEW, SCALE3, T3D

CW_ARCBALL

IDL Reference Guide

Chapter 3: Procedures and Functions 443

CW_BGROUP

The CW_BGROUP function creates awidget base of buttons. It simplifies creation
of acluster of buttons, and handles the details of creating the proper base (standard,
exclusive, or non-exclusive) and filling in the desired buttons. Button groups can be
simple menus in which each button acts independently, exclusive groups (also known
as “radio buttons’), or non-exclusive groups (often called “ checkboxes’). Events for
the individual buttons are handled transparently, and a CW_BGROUP event
returned. This event can return any one of the following:

* Index of the button within the base

¢ Widget ID of the button

e Name of the button

* Arbitrary value taken from an array of user values

Only buttons with textual names are handled by this widget. Bitmaps are not
understood.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_bgroup. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = CW_BGROUP(Parent, Names [, BUTTON_UVALUE=array]
[, COLUMN-=value] [, EVENT_FUNC=string] [{, /EXCLUSIVE|,
INONEXCLUSIVE} | [, SPACE=pixels] [, XPAD=pixels| [, Y PAD=pixels]]
[, FONT=font] [, FRAME=width] [, IDS=variable]
[, LABEL_LEFT=string |, LABEL_TOP=string] [, /IMAP] [, /INO_RELEASE]
[,/RETURN_ID |, /RETURN_INDEX |, /RETURN_NAME] [, ROW=valug]
[, /SCROLL] [, SET_VALUE=value] [SPACE=value] [, TAB_MODE=value]
[, X_SCROLL_SIZE=width] [, Y_SCROLL_SIZE=height]
[, SET_VALUE=value] [, UNAME=string] [, UVALUE=valug]
[, XOFFSET=value] [, XSIZE=width] [, YOFFSET=value] [, Y SIZE=value])

Return Value

This function returns the widget 1D of the newly-created button group widget.

IDL Reference Guide CW_BGROUP

444 Chapter 3: Procedures and Functions

Arguments

Parent
The widget 1D of the parent widget.
Names

A string array, one string per button, giving the name of each button.
Keywords

BUTTON_UVALUE

An array of user values to be associated with each button and returned in the event
structure. If thiskeyword is set, the user values are always returned, even if the any of
the RETURN_ID, RETURN_INDEX, or RETURN_NAME keywords are set.

COLUMN
Buttons will be arranged in the number of columns specified by this keyword.
EVENT_FUNC

A string containing the name of afunction to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget. This function is called with the return value structure
whenever abutton is pressed, and follows the conventions for user-written event
functions.

EXCLUSIVE

Set this keyword to cause buttonsto be placed in an exclusive base, in which only one
button can be selected at atime.

FONT

The name of the font to be used for the button titles. The font specified isa“device
font” (an X Windows font on Motif systems; a TrueType or PostScript font on
Windows systems). See “About Device Fonts’ on page 5136 for details on specifying
names for device fonts. If this keyword is omitted, the default font is used.

FRAME

Specifies the width of the frame to be drawn around the base.

CW_BGROUP IDL Reference Guide

Chapter 3: Procedures and Functions 445

IDS
A named variable in which the button IDs will be stored, as alongword vector.
LABEL LEFT

Set this keyword to a string creating a text label to the left of the buttons.

Note
You can use language catal ogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

LABEL_TOP

Set this keyword to a string creating a text label above the buttons.

Note
You can use language catal ogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

MAP

Set this keyword to cause the base to be mapped when the widget is realized (the
default).

NONEXCLUSIVE

Set this keyword to cause buttons to be placed in an non-exclusive base, in which any
number of buttons can be selected at once.

NO_RELEASE
If set, button release events will not be returned.
RETURN_ID

Set this keyword to return the widget ID of the button in the VALUE field of returned
events. Thiskeyword isignored if the BUTTON_UVALUE keyword is set.

IDL Reference Guide CW_BGROUP

446

Chapter 3: Procedures and Functions

RETURN_INDEX

Set this keyword to return the zero-based index of the button within the base in the
VALUE field of returned events. This keyword isignored if the BUTTON_UVALUE
keyword is set. THISIS THE DEFAULT.

RETURN_NAME

Set this keyword to return the name of the button within the base in the VALUE field
of returned events. This keyword isignored if the BUTTON_UVALUE keyword is
Set.

ROW
Buttons will be arranged in the number of rows specified by this keyword.
SCROLL

If set, the base will include scroll barsto allow viewing alarge base through asmaller
viewport.

SET_VALUE

Allows changing the current state of toggle buttons (i.e., exclusive and nonexclusive
groups of buttons). The behavior of SET_VALUE differs between EXCLUSIVE and
NONEXCLUSIVE CW_BGROUP widgets. With EXCLUSIVE CW_BGROUP
widgets, the argument to SET_VALUE istheid of the widget to be turned on. With
NONEXCLUSIVE CW_BGROUP widgets the argument to SET_VALUE should be
an array of on/off flags for the array of buttons.

SPACE
The space, in pixels, to be left around the edges of arow or column major base.
TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

CW_BGROUP IDL Reference Guide

Chapter 3: Procedures and Functions 447

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “ Inheriting the TAB_MODE Value” in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-14: TAB_MODE Keyword Options

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE
The “user value’ to be assigned to the widget.
XOFFSET

The X offset of the widget relative to its parent.

IDL Reference Guide CW_BGROUP

448

Chapter 3: Procedures and Functions

XPAD
The horizontal space, in pixels, between children of arow or column major base.
XSIZE
The width of the base.
X _SCROLL_SIZE
The width of the viewport if SCROLL is specified.
YOFFSET
TheY offset of the widget relative to its parent.
YPAD
The vertical space, in pixels, between children of arow or column major base.
YSIZE
The height of the base.
Y _SCROLL_SIZE
The height of the viewport if SCROLL is specified.
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the button group. The values for
different types of CW_BGROUP widgetsis shown in the table below:

Type Value

normal None

Table 3-15: Button Group Values

CW_BGROUP IDL Reference Guide

Chapter 3: Procedures and Functions 449

Type Value

exclusive Index of currently set button

non-exclusive | Vector indicating the position
of each button (1-set, O-unset)

Table 3-15: Button Group Values (Continued)

See " Writing Compound Widgets’ in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_BGROUP Widget

CW_BGROUP generates an event that specifies which button or buttons were
selected. The widgets generate event structures with the following definition:

event = {ID:OL, TOP:0OL, HANDLER OL, SELECT:0, VALUE:O }

The SELECT field is passed through from the button event. VALUE is either the
INDEX, ID, NAME, or BUTTON_UVALUE of the button, depending on how the
widget was created.

Examples

See “Creating Menus” in Chapter 30 of the Building IDL Applications manual for
example CW_BGROUP code.

Version History

Pre4.0

Introduced

6.1

Added TAB_MODE keyword

See Also

CW_PDMENU, WIDGET_BUTTON

IDL Reference Guide

CW_BGROUP

450 Chapter 3: Procedures and Functions

CW_CLR_INDEX

The CW_CLR_INDEX function creates a compound widget that displays a
horizontal color bar and allows the user to select a color index. Clicking on the bar
sets the color index.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_cl r_i ndex. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = CW_CLR_INDEX(Parent [, COLOR_VALUES=vector |
[, NCOLORS=value] [, START_COLOR=valu€]]
[, EVENT_FUNC="function_name’] [, /FRAME] [, LABEL=string]
[, NCOLORS=value] [, START_COLOR=value] [, TAB_MODE=value]
[, UNAME=string] [, UVALUE=value] [, VALUE=value] [, X SIZE=pixelg]
[, YSIZE=pixels])

Return Value
This function returns the widget ID of the newly-created color index widget.
Arguments

Parent

The widget 1D of the parent widget.
Keywords
COLOR_VALUES

A vector of color indices containing the colors to be displayed in the color bar. If
omitted, NCOLORS and START_COLOR specify the range of color indices.

EVENT_FUNC

A string containing the name of afunction to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget. This function is called with the return value structure
whenever abutton is pressed, and follows the conventions for user-written event
functions.

CW_CLR_INDEX IDL Reference Guide

Chapter 3: Procedures and Functions 451

FRAME
If set, aframe will be drawn around the widget.

LABEL

A text label that appears to the left of the color bar.

Note
You can use language catal ogs to internationalize this value with stringsin

particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

NCOLORS

The number of colorsto place in the color bar. The default is!'D.N_COLORS.
START_COLOR

Set this keyword to the starting color index, placed at the left of the bar.
TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_ MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Vaue’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.

Table 3-16: TAB_MODE Keyword Options

IDL Reference Guide CW_CLR_INDEX

452 Chapter 3: Procedures and Functions

Value Description
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-16: TAB_MODE Keyword Options (Continued)

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE
The “user value’ to be assigned to the widget.
VALUE

Set this keyword to the index of the color that isto beinitially selected. The default is
the START_COLOR.

XSIZE
The width of the color bar in pixels. The default is 192.
YSIZE

The height of the color bar in pixels. The default is 12.

CW_CLR_INDEX IDL Reference Guide

Chapter 3: Procedures and Functions 453

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the color selection widget. The
value of aCW_CLR_INDEX widget isthe index of the color selected.

See " Writing Compound Widgets® in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET _INFO.

Widget Events Returned by the CW_CLR_INDEX

Widget

Thiswidget generates event structures with the following definition:

Event = {CWCOLOR INDEX, ID: base, TOP:. ev.top, HANDLER OL,

VALUE: c}

The VALUE field is the color index selected.

Version History

Pre4.0

Introduced

6.1

Added TAB_MODE keyword

See Also

CW_COLORSEL, XLOADCT, XPALETTE

IDL Reference Guide

CW_CLR_INDEX

454 Chapter 3: Procedures and Functions

CW_COLORSEL

The CW_COLORSEL function creates a compound widget that displays all the
colorsin the current colormap in a16 x 16 (320 x 320 pixels) grid. To select a color
index, the user moves the mouse pointer over the desired color square and presses
any mouse button. Alternatively, the color index can be selected by moving one of
the three sliders provided around the grid.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_col orsel . prointhel i b subdirectory of the IDL distribution.

Using CW_COLORSEL

The command:
W DGET_CONTROL, wi dget| D, SET_VALUE = -1

informs the widget to initialize itself and redraw. It should be called when any of the
following happen:

e Thewidget isrealized
e Thewidget needs redrawing
e The brightest or darkest color has changed
To set the current color index, use the command:
W DGET_CONTROL, wi dget| D, SET_VALUE = index
To retrieve the current color index and storeit in the variable var , use the command:
W DGET_CONTROL, wi dget| D, GET_VALUE = var

Syntax
Result = CW_COLORSEL (Parent [, /FRAME]
[, TAB_MODE=value][, UNAME=string] [, UVALUE=value]
[, XOFFSET=value] [, YOFFSET=value])
Return Value

This function returns the widget ID of the newly-created color index widget.

CW_COLORSEL IDL Reference Guide

Chapter 3: Procedures and Functions 455

Arguments

Parent

The widget ID of the parent widget.
Keywords
FRAME

If set, aframeisdrawn around the widget.
TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_ MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Vaue’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-17: TAB_MODE Keyword Options

IDL Reference Guide CW_COLORSEL

456 Chapter 3: Procedures and Functions

Note
In widget applications on the UNIX platform, the Motif library controls what

widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, usethe FIND_BY_UNAME keyword to the
WIDGET _INFO function. The UNAME should be unique to the widget hierarchy;
FIND_BY_UNAME returnsthe ID of the first widget with the specified name.

UVALUE
The “user value” to be assigned to the widget.
XOFFSET
The X offset position
YOFFSET
The Y offset position
Widget Events Returned by the CW_COLORSEL
Widget

This widget generates event structures with the following definition:

Event = {COLORSEL_EVENT, |ID: base, TOP: ev.top, HANDLER OL,
VALUE: c}

The VALUE field is the color index selected.

CW_COLORSEL IDL Reference Guide

Chapter 3: Procedures and Functions

Version History

457

Pre4.0

Introduced

6.1

Added TAB_MODE keyword

See Also

CW_CLR_INDEX, XLOADCT, XPALETTE

IDL Reference Guide

CW_COLORSEL

458 Chapter 3: Procedures and Functions

CW_DEFROI

The CW_DEFROI function creates a compound widget that allows the user to define
aregion of interest within awidget draw window.

Warning
Thisisamodal widget. No other widget applications will be responsive while this
widget isin use. Also, since CW_DEFROI hasits own event-handling loop, it
should not be created as a child of amodal base.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_defroi.prointheli b subdirectory of the IDL distribution.

Syntax

Result = CW_DEFROI(Draw [, IMAGE_SIZE=vector] [, OFFSET=vector]
[, /ORDER] [, /RESTORE] [, TAB_MODE=value] [, ZOOM=vector])

Return Value

This function returns an array of subscripts defining the region. If no regionis
defined, the scalar -1 is returned.

Arguments

Draw

The widget 1D of draw window in which to draw the region. Note that the draw
window must have both BUTTON and MOTION events enabled (see
WIDGET_DRAW for more information).

Keywords
IMAGE_SIZE

The size of the underlying array, expressed as atwo element vector: [columns, rows).
Default isthe size of the draw window divided by the value of ZOOM.

OFFSET

The offset of lower left corner of image within the draw window. Default = [0,0].

CW_DEFROI IDL Reference Guide

Chapter 3: Procedures and Functions 459

ORDER

Set this keyword to return inverted subscripts, asif the array were output from top to
bottom.

RESTORE

Set this keyword to restore the draw window to its previous appearance on exit.
Otherwise, the regions remain on the drawable.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Value” in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-18: TAB_MODE Keyword Options

IDL Reference Guide CW_DEFROI

460 Chapter 3: Procedures and Functions

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

ZOOM

If the image array was expanded (using REBIN, for example) specify this two
element vector containing the expansion factor in X and Y. Default = [1,1]. Both
elements of ZOOM must be integers.

Widget Events Returned by the CW_DEFROI Widget

Region definition widgets do not return an event structure.
Examples

The following two procedures create a region-of-interest widget and its event
handler. Create afile containing the program code using atext editor and compile
using the .RUN command, or type .RUN at the IDL prompt and enter the lines
interactively. First, create the event handler:

PRO test _event, ev

;. The common bl ock holds vari ables that are shared between the
; routine and its event handl er:
COWON T, draw, dbutt, done, inmage

Defi ne what happens when you click the "Draw RO " button:
IF ev.id EQ dbutt THEN BEG N
; The RO definition will be stored in the variable Q
Q = CW.DEFRA (draw)
IF (QO0] NE -1) then BEG N
; Show the size of the RO definition array:

HELP, Q
Duplicate the original image.
i mge2 = i nage

; Set the points in the RO array Q equal to a single
; color val ue:
i mge2(Q =!P. COLOR- 1

CW_DEFROI IDL Reference Guide

Chapter 3: Procedures and Functions 461

; Get the window I D of the draw w dget:
W DGET_CONTROL, draw, CET_VALUE=W

Set the draw wi dget as the current graphics w ndow
WBET, W

; Load the image plus the RO into the draw wi dget:
TV, imge2
ENDI F
ENDI F

; Define what happens when you click the "Done" button:
IF ev.id EQ done THEN W DGET_CONTROL, ev.top, /DESTROY

END

Next, create a draw widget that can call CW_DEFROI. Note that you must specify
both button events and motion events when creating the draw widget, if it isto be
used with CW_DEFROI.

PRO t est
COWON T, draw, dbutt, done, inmage

Create a base to hold the draw wi dget and buttons:
base = W DGET_BASE(/ COLUWN)

; Create a draw widget that will return both button and

;. notion events:

draw = W DCGET_DRAW base, XSI ZE=256, YSIZE=256, /BUTTON, /MOTI ON)
dbutt = W DGET_BUTTON(base, VALUE='Draw RO ')

done = W DGET_BUTTO\(base, VALUE=' Done')

W DGET_CONTROL, base, /REALIZE

; Get the widget ID of the draw w dget:
W DGET_CONTROL, draw, GET_VALUE=W

; Set the draw widget as the current graphics w ndow
WBET, W

; Create an original inmage:
i mage = BYTSCL(SI N(DI ST(256)))

; Display the inage in the draw wi dget:
TV, inage

o Start XMANAGER:
XVANAGER, "test", base

END

IDL Reference Guide CW_DEFROI

462 Chapter 3: Procedures and Functions

Thisresultsin the following:

—

Add with left button: drag or click
Remove with right button

Clear| Clear ﬁlll New| Cancel

“ Polygon ~ Point +« Rectangle - Circle

Mode: < Add ~ Remove
Donel
‘IPDsitiDn: 39 89

Figure 3-31: The Region of Interest Definition Widget

Version History

Pre4.0 Introduced

6.1 Added TAB_MODE keyword
See Also

DEFROI

CW_DEFROI IDL Reference Guide

Chapter 3: Procedures and Functions 463

CW_FIELD

The CW_FIELD function creates awidget data entry field. The field consists of a
label and atext widget. CW_FIELD can create string, integer, or floating-point
fields. The default is an editable string field.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw field. prointheli b subdirectory of the IDL distribution.

Syntax

Result = CW_FIELD(Parent [, /ALL_EVENTS] [, /COLUMN]
[, FIELDFONT=font] [, /FLOATING |, /INTEGER |, /LONG |, /STRING]
[, FONT=string] [, FRAME=pixels| [, /INOEDIT] [, /RETURN_EVENTS]
[, /ROW] [, STRING=string] [, TAB_MODE=value] [, TEXT_FRAME=pixels]
[, TITLE=string] [, UNAME=string] [, UVALUE=value] [, VALUE=value]
[, XSIZE=characters] [, Y SIZE=lineg])

Return Value
This function returns the widget ID of the newly created field widget.
Arguments
Parent
The widget 1D of the parent widget.
Keywords
ALL_EVENTS

Like RETURN_EVENTS, but return an event whenever the contents of atext field
have changed.

COLUMN

Set this keyword to center the label above the text field. The default isto position the
label to the left of the text field.

IDL Reference Guide CW_FIELD

464

Chapter 3: Procedures and Functions

FIELDFONT

Set this keyword to a string containing the name of the font to use for the TEXT part
of thefield.

FLOATING

Set this keyword to have the field accept only floating-point values. Any number or
string entered is converted to its floating-point equivalent.

Note
Foating-point fields are not editable.

FONT

Set this keyword to a string containing the name of the font to use for the TITLE of
thefield. The font specified isa“device font” (an X Windows font on Motif systems;
a TrueType or PostScript font on Windows systems). See “About Device Fonts” on
page 5136 for details on specifying names for device fonts. If this keyword is
omitted, the default font is used.

FRAME

Set this keyword to the width, in pixels, of aframe to be drawn around the entirefield
cluster. The default is no frame.

INTEGER

Set this keyword to have the field accept only integer values. Any humber or string
entered is converted to its integer equivalent (using FIX). For example, if 12.5is
entered in thistype of field, it is converted to 12.

Note
Integer fields are not editable.

LONG

Set this keyword to have the field accept only long integer values. Any number or
string entered is converted to its long integer equivalent (using LONG).

Note
Long integer fields are not editable.

CW_FIELD IDL Reference Guide

Chapter 3: Procedures and Functions 465

NOEDIT

Normally, the value in the text field can be edited. Set this keyword to make the field
non-editable.

RETURN_EVENTS

Set this keyword to make CW_FIELD return an event when a carriage return is
pressed in atext field. The default is not to return events. Note that the value of the
text field is always returned when the following command is used:

W DGET_CONTROL, field, GET_VALUE = X
ROW
Set this keyword to position the label to the left of the text field. Thisis the default.

STRING

Set this keyword to have the field accept only string values. Numbers entered in the
field are converted to their string equivalents. Thisis the default.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It is not possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Value” in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.

Table 3-19: TAB_MODE Keyword Options

IDL Reference Guide CW_FIELD

466

Chapter 3: Procedures and Functions

Value Description
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Note

Table 3-19: TAB_MODE Keyword Options

In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

TEXT_FRAME

Set this keyword to the width in pixels of aframe to be drawn around the text field.
Note that this keyword is only a*“hint” to the toolkit, and may be ignored in some
instances. Under Microsoft Windows, text widgets always have a frame of width 1
pixel.

TITLE

Note

A string containing the text to be used as the label for the field. The default is“Input
Field".

You can use language catal ogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

UNAME

CW_FIELD

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget

IDL Reference Guide

Chapter 3: Procedures and Functions 467

hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE
The “user value’ to be assigned to the widget.
VALUE

Theinitial value in the text widget. This value is automatically converted to the type
defined by the STRING, INTEGER, LONG, and FLOATING keywords.

XSIZE

An explicit horizontal size (in characters) for the text input area. The default isto let
the window manager size the widget. Using the X SIZE keyword is not
recommended.

YSIZE
An explicit vertical size (in lines) for the text input area. The default is 1.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgets is actually the ID of the
compound widget's base widget. This means that many keywordsto the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the field. If one of the
FLOATING, INTEGER, LONG, or STRING keywordsto CW_FIELD is set, values
set with the SET_VALUE keyword to WIDGET_CONTROL will be forced to the
appropriate type. Values returned by the GET_VALUE keyword to
WIDGET_CONTROL will be of the type specified when the field widget is created.
Note that if the field contains string information, returned values will be contained in
astring array even if the field contains only a single string.

See " Writing Compound Widgets’ in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

IDL Reference Guide CW_FIELD

468 Chapter 3: Procedures and Functions

Widget Events Returned by the CW_FIELD Widget

Thiswidget generates event structures with the following definition:

event = { ID:OL, TOP:0L, HANDLER OL, VALUE:'', TYPE: 0O , UPDATE: 0}
The VALUE field isthe value of the field. TY PE specifies the type of data contained
in the field and can be any of the following: O=string, 1=floating-point, 2=integer,
3=long integer (the value of TY PE is determined by setting one of the STRING,

FLOAT, INTEGER, or LONG keywords). UPDATE contains a zero if the field has
not been altered or aoneif it has.

Examples

The code below creates amain base with afield cluster attached to it. The cluster
accepts string input, has the title “Name”, and has a frame around it:

base = W DGET_BASE()
field = CWFI ELD(base, TITLE = "Nane", /FRAME)
W DGET_CONTROL, base, /REALIZE

Version History

Pre4.0 Introduced
6.1 Added TAB_MODE keyword
See Also

WIDGET_LABEL, WIDGET_TEXT

CW_FIELD IDL Reference Guide

Chapter 3: Procedures and Functions 469

CW_FILESEL

The CW_FILESEL function is acompound widget for file selection.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw filesel.prointhelib subdirectory of the IDL distribution.

Syntax

Result = CW_FILESEL (Parent [, /FILENAME] [, FILTER=string array]
[, IFIX_FILTER] [, /FRAME] [, IMAGE_FILTER] [, /IMULTIPLE |, /SAVE]
[, PATH=string] [, TAB_MODE=value] [, UNAME=string] [, UVALUE=value]
[, \WARN_EXIST])

Return Value
This function returns the widget 1D of the newly-created file selection widget.
Arguments

Parent

The widget 1D of the parent.
Keywords
FILENAME

Set this keyword to have the initial filename filled in the filename text area.
FILTER

Set this keyword to an array of strings determining the filter types. If not set, the
default is“All Files’. All files containing the chosen filter string will be displayed as
possible selections. “All Files’ is a special filter which returnsal filesin the current
directory.

Note
You can use language catal ogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

IDL Reference Guide CW_FILESEL

470 Chapter 3: Procedures and Functions

Example:
FILTER=["All Files", ".txt"]
Multiplefilter types may be used per filter entry, using a comma as the separator.
Example:
FILTERS[".jpg, .jpeg", ".txt, .text"]
FIX_FILTER
If set, the user can not change the file filter.
FRAME
If set, aframeisdrawn around the widget.

IMAGE_FILTER

If set, thefilter “Image Files’ will be added to the end of the list of filters. If set, and
FILTER isnot set, “Image Files” will be the only filter displayed. Vaid image files
are determined from QUERY _IMAGE.

MULTIPLE

If set, thefile selection list will alow multiple filenames to be selected. The filename
text areawill not be editablein this case. It isillegal to specify both /SAVE and
/MULTIPLE.

PATH

Set this keyword to theinitial path the widget isto start in. The default is the current
directory.

SAVE

Set this keyword to create awidget with a“ Save” button instead of an“Open” button.
Itisillegal to specify both /SAVE and /MULTIPLE.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

CW_FILESEL IDL Reference Guide

Chapter 3: Procedures and Functions 471

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Vaue” in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-20: TAB_MODE Keyword Options

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget.

IDL Reference Guide CW_FILESEL

472 Chapter 3: Procedures and Functions

WARN_EXIST

Set this keyword to produce a question dialog if the user selects afile that already
exists. This keyword is useful when creating a“write” dialog. The default isto allow
any filename to be quietly accepted, whether it exists or not.

Keywords to WIDGET_CONTROL

You can use the GET_UVALUE and SET_UVALUE keywords to
WIDGET_CONTROL to obtain or set the user value of thiswidget. Use the
command to read the currently selected filename (or filenamesif MULTIPLE is set)
including the full path:

W DGET_CONTROL, id, GET_VALUE=fil enanes
To set the value of the filename, use the following command:
W DGET_CONTROL, id, SET_VALUE=val ue

where value is a scalar string (or string array) containing the filenames, including the
full path.

See “ Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for amore complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by CW_FILESEL

CW_FILESEL generates an event that specifies the name of the selected file, whether
the user completed the file selection operation, and the filename filter used. This
widget generates event structures with the following definition:

Event = {FILESEL_EVENT, ID:OL, TOP:0L, HANDLER OL, VALUE:'',
DONE: OL, FILTER "'}

The ID field isthe widget 1D of the CW_FILESEL widget. The TOP field contains
the widget ID of the top-level widget. The HANDLER field isalways set to zero. The
VALUE field isastring containing the most recent filename selected, if any.

Note
Evenif MULTIPLE is set, VALUE will only contain the most recently selected
filename. To retrieve al of the currently selected filenames, use the GET_VALUE
keyword to WIDGET_CONTROL.

CW_FILESEL IDL Reference Guide

Chapter 3: Procedures and Functions 473

The DONE field can be any of the following:

0 User selected afile but didn't double-click, or the user
changed filters (in this case the VALUE field will be an
empty string)

1 User pressed “ Open”/“ Save” or double-clicked on afile

2 User pressed “Cancel”

The FILTER field is astring containing the current filter.
Examples

This example createsa CW_FILESEL widget that is used to select image files for
display. Note how the DONE tag of the event structure returned by CW_FILESEL is
used to determine which button was pressed, and how the VALUE tag is used to
obtain the file that was sel ected:

PRO i mage_opener _event, event
W DGET_CONTROL, event.top, GET_UVALUE=state, /NO _COPY

CASE event. DONE OF
0: BEG N
state.file = event. VALUE
W DGET_CONTROL, event.top, SET_UVALUE=state, /NO _COPY
END
1: BEG N
IF (state.file NE'') THEN BEG N
img = READ | MAGE(state.file)
TV, ing
ENDI F
W DGET_CONTROL, event.top, SET_UVALUE=state, /NO _COPY
END
2: W DGET_CONTROL, event.top, /DESTROY
ENDCASE

END
PRO i mage_opener
DEVI CE, DECOVMPOSED=0, RETAI N=2
base = W DGET_BASE(TI TLE =' OCpen | mage', /COLUW)

filesel = CWFILESEL(base, /I MAGE_FILTER, FILTER="AI| Files")
file=""

IDL Reference Guide CW_FILESEL

474

Chapter 3: Procedures and Functions

state = {file:file}

W DGET_CONTROL, base, /REALIZE

END

W DGET_CONTROL, base, SET_UVALUE=state, /NO_CORPY
XMANAGER, 'inmage_opener', base
This code opens the following dialog:
&l Open Image M=l E3
Drive:IE:"s VI
|E:'ximages |
cloud.jpg

Eullens.'EE

File name:|WDf|'2|tl'ﬂF'-F'nEI | Dpen |
Filter: I.-'l'l.ll Files vI Cancel |

Figure 3-32: CW_FILESEL

Version History

5.3

Introduced

6.1

Added TAB_MODE keyword

See Also

DIALOG_PICKFILE, FILEPATH

CW_FILESEL

IDL Reference Guide

Chapter 3: Procedures and Functions 475

CW_FORM

The CW_FORM function is a compound widget that simplifies creating small forms
which contain text, numeric fields, buttons, lists, and droplists. Event handling isaso
simplified.
Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_form prointheli b subdirectory of the IDL distribution.

Using CW_FORM
Theform hasavalue that isastructure with atag/value pair for each field in the form.
Use the command

W DGET_CONTROL, id, GET_VALUE=v

to read the current value of the form. To set the value of one or more tags, use the
command

W DGET_CONTROL, id, SET_VALUE={ Tag: value, ..., Tag value
Syntax

Result = CW_FORM([Parent,] Desc [, /COLUMN] [, IDS=variabl€]
[, TAB_MODE=value] [, TITLE=string] [, UNAME=string]
[, UVALUE=value])

Return Value

If the argument Parent is present, the returned value of this function is the widget 1D
of the newly-created form widget. If Parent is omitted, the form realizesitself asa
modal, top-level widget and CW_FORM returns a structure containing the value of
each field in the form when the user finishes.

Arguments

Parent

The widget ID of the parent widget. Omit this argument to created amodal, top-level
widget.

IDL Reference Guide CW_FORM

476

Desc

CW_FORM

Chapter 3: Procedures and Functions

A string array describing the form. Each element of the string array contains two or
more comma-delimited fields. Each string has the following format:

'‘Depth, Item, Initial value, Settings

Use the backslash character (“\”) to escape commas that appear within fields. To
include the backslash character, escape it with another backslash.

Thefields are defined as follows:

e Depth

A digit defining the level at which the element will be placed on the form.
Nesting is used primarily for layout, with row or column bases.

Thisfield must contain the digit O, 1, or 2, with the following effects:

0 Continue the current nesting level
1 Begin anew level under the current level
2 Last element at the current level

e |tem

A label defining the type of element to be placed in the form. Item must be one
of the following: BASE, BUTTON, DROPLIST, FLOAT, INTEGER,
LABEL, LIST, or TEXT.

BASEs and LABEL s do not return avalue in the widget value structure. The
other items return the following value types:

BUTTON

Aninteger or integer array. For single buttons, the
valueis1if the buttonisset, or Oif it is not set. For
exclusive button groups, the value is the index of the
currently set button. For non-exclusive button
groups, the value is an array containing an element
for each button. Array elements are set to 1 if the
corresponding button is set, or Oif it isnot set.

DROPLIST

An integer. The value set in the widget value
structure is the zero-based index of theitemis
selected.

IDL Reference Guide

Chapter 3: Procedures and Functions 477

FLOAT A floating-point value. The value set in the widget
value structure is the floating-point value of the field.

INTEGER Aninteger. The value set in the widget value
structure is the integer value of the field.

LIST An integer. The value set in the widget value
structure is the zero-based index of theitemis
selected.

TEXT A string. The value set in the widget value structure

isthe string value of the field.

e Initial value
Theinitia value of the field. The Initial value field isleft empty for BASESs.

For BUTTON, DROPLIST, and LIST items, the value field contains one or
more item names, separated by the | character. Strings do not need to be
enclosed in quotes. For example, the following line defines an exclusive button
group with buttons labeled “one,” “two,” and “three.”

"0, BUTTON, one|two|three, EXCLUSI VE

For FLOAT, INTEGER, LABEL, and TEXT items, the value field contains the
initial value of the field.

Note
You can use language catalogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using
Language Catalogs’ in the Building IDL Applications manual.

e Settings

The Settings field contains one of the following keywords or keyword=value
pairs. Keywords are used to specify optional attributes or options. Any number
of keywords may be included in the description string.

Note that preceding keywords with a“/” character has no effect. Simply
including a keyword in the Settings field enables that option.

CENTER Specifies alignment of LABEL items.

COLUMN If present, specifies column layout in
BASES or for BUTTON groups.

IDL Reference Guide CW_FORM

478 Chapter 3: Procedures and Functions

EXCLUSIVE If present, makes an exclusive set of
BUTTONS. The default is nonexclusive.

FONT=font name If present, the font for the item is specified.
The font specified isa“device font” (an X
Windows font on Matif systems; a
TrueType or PostScript font on Windows
systems). See “About Device Fonts’” on
page 5136 for details on specifying names
for device fonts. If this keyword is omitted,
the default font is used.

EVENT=function Specifies the name of a user-written event
function that is called whenever the
element is changed. The event function is
called with the widget event structure as a
parameter. It may return an event structure
or zero to indicate that no further event
processing is desired.

FRAME If present, aframe is drawn around the
item. Valid only for BASEs.

LABEL_LEFT=label Place alabel to the left of the item. This
keyword is valid with BUTTON,
DROPLIST, FLOAT, INTEGER and
TEXT items.

LABEL_TOP=label Place alabel above the item. This keyword
isvalid with BUTTON, DROPLIST,
FLOAT, INTEGER and TEXT items.

LEFT Specifies alignment of LABEL items.

NO_RELEASE If present, exclusive and non-exclusive
buttons generate only select events. This
keyword has no effect on regular buttons.

CW_FORM IDL Reference Guide

Chapter 3: Procedures and Functions

QUIT

If the form widget is created as atop-level,
modal widget, when the user activates an
item defined with this keyword, theformis
destroyed and its widget value returned in
the widget value structure of CW_FORM.
For non-modal form widgets, events
generated by changing thisitem have their
QUIT field set to 1.

RIGHT

Specifies alignment of LABEL items.

ROW

If present, specifies row layout in BASES
or for BUTTON groups.

SET_VALUE=value

Setstheinitial value of BUTTON groups or
DROPLISTs. For droplists and exclusive
button groups, value should be the zero-
based index of the item selected.

TAG=name The tag name of this element in the
widget’s value structure. If not specified,
the tag name is TAGnnn, where nnn isthe
zero-based index of the item in the Desc
array.

WIDTH=n Specifies the width, in characters, of a
TEXT, INTEGER, or FLOAT item.

Keywords
COLUMN

479

Set this keyword to make the orientation of the form vertical. If COLUMN isnot set,
theformislaid out in a horizontal row.

IDS

Set this keyword equal to a named variable into which the widget id of each widget
corresponding to an element in the Desc array is stored.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is

IDL Reference Guide

CW_FORM

480

Chapter 3: Procedures and Functions

inherited by lower-level bases and child widgets unlessit is explicitly set on an

individual widget.

Note

It is not possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “ Inheriting the TAB_MODE Value’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.

2 Navigate only onto the widget.

3 Navigate only off of the widget.

Table 3-21: TAB_MODE Keyword Options
Note

In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

TITLE

Set this keyword equal to a scalar string containing the title of the top level base.
TITLE isnot used if the form widget has a parent widget.

Note

You can use language catal ogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

CW_FORM

IDL Reference Guide

Chapter 3: Procedures and Functions 481

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe 1D of the first widget
with the specified name.

UVALUE
Set this keyword equal to the user value associated with the form widget.
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget’s base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the form. The form has avalue
that is a structure with atag/value pair for each field in the form. Use the command

W DGET_CONTROL, id, GET_VALUE=v

to read the current value of the form. To set the value of one or more tags, use the
command

W DGET_CONTROL, id, SET_VALUE={ Tag:value, ..., Tag:val ue}

See " Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_FORM Widget

CW_FORM generates an event that specifies the which field within the form
changed and the new value. Thiswidget generates event structures each time the
value of the form is changed. The event structure has the following definition:

Event = { I1D:OL, TOP:0L, HANDLER OL, TAG'', VALUE:0, QU T: 0}

TheID field isthe widget ID of the CW_FORM widget. The TOP field is the widget
ID of the top-level widget. The TAG field contains the tag name of the field that

IDL Reference Guide CW_FORM

482

Chapter 3: Procedures and Functions

changed. The VALUE field contains the new value of the changed field. The QUIT
field contains a zero if the quit flag is not set, or oneif it is set.

Examples

Define aform with alabel, two groups of vertical buttons (one non-exclusive and the
other exclusive), atext field, an integer field, and “OK” and “Done” buttons. If either
the“OK” or “Done”’ buttons are pressed, the form exits.

Begin by defining a string array describing the form:

desc = [$

"0, LABEL, Centered Label,

"1, BASE,, ROW FRAME',

CENTER , $

"0, BUTTON, Bl|B2| B3, LABEL_TOP=Nonexclusive:,' $

+ ' COLUMN, TAG=bgl', $

"2, BUTTON, E1|E2|E2, EXCLUSI VE, LABEL_TOP=Excl usive:,' $

+ ' COLUWN, TAG=bg2' , $

"0, TEXT, , LABEL_LEFT=Enter File nanme:, WDTH=12,' $

+ ' TAG=fname', $

"0, INTEGER, 0, LABEL_LEFT=File size:, WDIH=6, TAG=fsize', $

"1, BASE,, ROW, $
"0, BUTTON, OK, QUIT,"
+ CTAGOK, $

"2, BUTTON, Cancel, QU T]

To use the form as a modal widget:
a = CWFORM desc, / COLUWN)

When the form is exited, (when the user presses the OK or Cancel buttons), a
structureis returned as the function’s value. We can examine the structure by

entering:
HELP, /STRUCTURE, a

IDL Output Meaning
BGL | NT Array] 3] Set buttons = 1, unset = 0.
B&X I NT 1 Second button of exclusive button

group was Set.

FNAME STRING 'test.dat’

Vaue of thetext field

FSI ZE LONG 120

Value of the integer field

Table 3-22: Output from HELP, /STRUCTURE

CW_FORM

IDL Reference Guide

Chapter 3: Procedures and Functions 483

IDL Output Meaning
(074 LONG 1 This button was pressed
TAGG LONG 0 This button wasn't pressed

Table 3-22: Output from HELP, /STRUCTURE

Note
If the “Cancel” button is pressed, the “OK” field isset to 0.

To use CW_FORM inside another widget:

a W DGET_BASE(Tl TLE=' Testing')
b CW FORM a, desc, /COLUW)

W DGET_CONTROL, a, /REALIZE
XMANAGER, 'Test', a

The event handling procedure (in this example, called TEST_EVENT), may use the
TAG field of the event structure to determine which field changed and perform any
data validation or special actions required. It can also get and set the value of the
widget by calling WIDGET_CONTROL.

Version History

Pre4.0 I ntroduced
6.1 Added TAB_MODE keyword

IDL Reference Guide CW_FORM

484 Chapter 3: Procedures and Functions
CW_FSLIDER

The CW_FSLIDER function creates a dider that selects floating-point values.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw fslider.prointhelib subdirectory of the IDL distribution.

Using CW_FSLIDER

To get or set the value of aCW_FSLIDER widget, use the GET_VALUE and
SET_VALUE keywordsto WIDGET_CONTROL.

Note
The CW_FSLIDER widget is based on the WIDGET_SLIDER routine, which
accepts only integer values. Because conversion between integers and floating-
point numbers necessarily involves round-off errors, the slider value returned by
CW_FSLIDER may not exactly match the input value, even when a floating-point
number is entered in the slider’stext field as an ASCII value. For more information
on floating-point issues, see “Accuracy and Floating Point Operations’ in Chapter
13 of the Building IDL Applications manual.

Syntax

Result = CW_FSLIDER(Parent [, /DOUBLE] [, /DRAG] [, /EDIT]
[, FORMAT=string] [, /FRAME] [, MAXIMUM=valug] [, MINIMUM=valug]
[, SCROLL=units] [, /SUPPRESS VALUE] [, TAB_MODE=value]
[, TITLE=string] [, UNAME=string] [, UVALUE=valug]
[, VALUE=initial_value] [, XSIZE=length | {, /VERTICAL [, YSIZE=height]}])

Return Value

This function returns the widget ID of the newly-created dlider widget.

Arguments

Parent

The widget 1D of the parent widget.

CW_FSLIDER IDL Reference Guide

Chapter 3: Procedures and Functions 485

Keywords

DOUBLE

Set this keyword to return double-precision values in the VALUE field of widget
events generated by CW_FSLIDER. Explicitly set DOUBLE=0 to ensure that values
returned in the VALUE field are single-precision. By default, CW_FSLIDER will
return double-precision valuesif any of the values specified by the MINIMUM,
MAXIMUM, or VALUE keywords is double-precision, or single-precision
otherwise.

Note
The value returned by the GET_VALUE keyword to WIDGET_CONTROL isthe
value contained in the VALUE field of the widget event structure.

DRAG

Set this keyword to cause events to be generated continuously when the dider is
adjusted. The default is DRAG=0, in which case events are generated only when the
mouse is released. Note that on slow systems, /DRAG performance can be
inadequate.

EDIT

Set this keyword to make the dider |abel editable. The default isEDIT=0. If EDIT is
set, the GET_VALUE keyword to WIDGET_CONTROL will return the value of the
dlider label if it has been changed.

Note
If the user edits the slider label but does not press Enter, the slider position will not
be updated to the new value. In this case, the widget programmer is responsible for
using GET_VALUE to retrieve the new value of the dlider label, followed by
SET VALUE to set the new value and update the slider position.

FORMAT

Provides the format in which the dider valueis displayed. This should be aformat as
accepted by the STRING procedure. The default FORMAT is' (G13. 6) '

FRAME

Set this keyword to have aframe drawn around the widget. The default is FRAME=0.

IDL Reference Guide CW_FSLIDER

486

Chapter 3: Procedures and Functions

MAXIMUM

The maximum value of the slider. The default is MAXIMUM=100.

MINIMUM

The minimum value of the dlider. The default is MINIMUM=0.

SCROLL

Set the SCROLL keyword to a floating-point value specifying the number of
floating-point units the scroll bar should move when the user clicks the left mouse
button inside the slider area (Motif) or on the slider arrows (Windows), but not on the
dlider itself. The default on both platformsis 0.01 x (MAXIMUM - MINIMUM),
which is 1% of the slider range.

SUPPRESS_VALUE

If this keyword is set, the current slider value is not displayed.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “ Inheriting the TAB_MODE Value’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.

Table 3-23: TAB_MODE Keyword Options

CW_FSLIDER IDL Reference Guide

Chapter 3: Procedures and Functions 487

Value Description
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-23: TAB_MODE Keyword Options (Continued)

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

TITLE

Set this keyword to a string defining the title of the dlider.

Note
You can use language catal ogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE

The “user value’ to be assigned to the widget.
VALUE

Theinitia floating-point numeric value of the slider.

IDL Reference Guide CW_FSLIDER

488 Chapter 3: Procedures and Functions

VERTICAL
If set, the dlider will be oriented vertically. The default is horizontal .
XSIZE
The length of horizontal sliders.
YSIZE
The height of vertical dliders.
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

You can use the GET_VALUE and SET_VALUE keywordsto
WIDGET_CONTROL to obtain or set the value of the dider. In addition, you can use
the SET_VALUE keyword to change the minimum and maximum values of the slider
by setting the keyword equal to athree-element vector [value, min, max].

Note
The SET_SLIDER_MAX and SET_SLIDER_MIN keywords to
WIDGET_CONTROL and the SLIDER_MIN_MAX keyword to WIDGET_INFO
do not work with floating point sliders created with CW_FSLIDER.

See “Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for amore complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET _INFO.

Widget Events Returned by the CW_FSLIDER Widget

CW_FSLIDER generates an event that specifies the current value of the dlider and a
flag specifying whether events are generated as the dlider is dragged. This widget
generates event structures with the following definition:

Event = { ID:OL, TOP:0OL, HANDLER OL, VALUE: 0.0, DRAG 0}

The VALUE field is the floating-point value selected by the slider. The DRAG field
reports on whether events are generated continuously (when the DRAG keyword is
set) or only when the mouse button is released (the default).

CW_FSLIDER IDL Reference Guide

Chapter 3: Procedures and Functions 489

Version History

Pre4.0 Introduced
6.1 Added TAB_MODE keyword
See Also

WIDGET_SLIDER

IDL Reference Guide CW_FSLIDER

490 Chapter 3: Procedures and Functions

CW_LIGHT EDITOR

The CW_LIGHT_EDITOR function creates a compound widget to edit properties of
existing IDLgrLight objectsin aview. Lights cannot be added or removed from a
view using this widget. However, lights can be “turned off or on” by hiding or
showing them (i.e., HIDE property).

Note
Two routines associated with the CW_LIGHT_EDITOR compound widget —
CW_LIGHT_EDITOR_GET and CW_LIGHT_EDITOR_SET — do not create
compound widgets themselves, but act on an existing CW_LIGHT _EDITOR
widget.

Syntax

Result = CW_LIGHT_EDITOR (Parent [, /DIRECTION_DISABLED]
[,IDRAG_EVENTS] [, FRAME=width] [, /HIDE_DISABLED]
[, LIGHT=0bjref(s)] [, /[LOCATION_DISABLED] [, TAB_MODE=value]
[, /TYPE_DISABLED] [, /UNAME=string] [, UVALUE=valug]
[, XSIZE=pixelg] [, Y SIZE=pixels] [, XRANGE=vector] [, Y RANGE=vector]
[, ZRANGE=vector])

Return Value
This function returns the widget ID of a newly-created light editor.
Arguments
Parent
The widget 1D of the parent widget for the new light editor.
Keywords
DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangeabl e by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

CW_LIGHT_EDITOR IDL Reference Guide

Chapter 3: Procedures and Functions 491

DRAG_EVENTS

Set this keyword to cause events to be generated continuously while aslider in the
compound widget is being dragged or when the mouse cursor is being dragged across
the draw widget portion of the compound widget. By default, events are only
generated when the mouse comesto rest at its final position and the mouse button is
released.

When this keyword is set, alarge number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows, sliders do not generate these events, but behavejust like

regular sliders.

FRAME

The value of this keyword specifies the width of aframe (in pixels) to be drawn
around the borders of the widget. Note that thiskeywordisonly a‘hint’ to the toolKkit,
and may beignored in some instances. The default is no frame.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeabl e by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

LIGHT

Set this keyword to one or more object referencesto IDLgrLight to edit. Thiswill
replace the current set of lights being edited with the list of lights from this keyword.

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangeabl e by the user. It will appear insensitive and will not generate an event.
The default isto allow this property to be changed.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is

IDL Reference Guide CW_LIGHT_EDITOR

492 Chapter 3: Procedures and Functions
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It is not possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “ Inheriting the TAB_MODE Value’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-24: TAB_MODE Keyword Options

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeable by the user. It will appear insensitive and will not generate an event.
The default is to allow this property to be changed.

UNAME

Set this keyword to a string that can be used to identify the widget. You can associate
aname with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID.

CW_LIGHT_EDITOR IDL Reference Guide

Chapter 3: Procedures and Functions 493

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The ‘user value' to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This value is not used by the
widget in any way, but exists entirely for the convenience of the IDL programmer.
This keyword allows you to set this value when the widget isfirst created. If
UVALUE is not present, the widget'sinitial user value is undefined.

XRANGE

A two-element vector defining the datarangein the x direction. This keyword is used
to determine the valid range for the light's location and direction properties

XSIZE
The width of the drawable areain pixels. The default width is 180.
YRANGE

A two-element vector defining the datarangein they direction. This keyword is used
to determine the valid range for the light's location and direction properties.

YSIZE
The height of the drawable areain pixels. The default height is 180.
ZRANGE

A two-element vector defining the datarange in the z direction. This keyword is used
to determine the valid range for the light's location and direction properties

WIDGET_CONTROL Keywords

The widget ID returned by this compound widget is actually the ID of the compound
widget's base widget. This means that many keywords to the WIDGET_CONTROL
and WIDGET _INFO routinesthat affect or return information on base widgets can be
used with this compound widget (e.g., UNAME, UVALUE).

IDL Reference Guide CW_LIGHT_EDITOR

494

Chapter 3: Procedures and Functions

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget. An
IDLgrLight object reference of the currently selected light is returned. The value of a
widget can be set with the SET_VALUE keyword to this routine.

SET_VALUE

Sets the value of the specified light editor compound widget. This widget accepts an
IDLgrLight object reference of the light in the list of lights to make as the current
selection. The property values are retrieved from the light object and the light editor
controls are updated to reflect those properties.

Widget Events Returned by the CW_LIGHT_EDITOR
Widget

There are variations of the light editor event structure depending on the specific event
being reported. All of these structures contain the standard three fields (ID, TOP, and
HANDLER). The different light editor event structures are described bel ow.

Light Selected

Thisisthe type of structure returned when the light selected in the light list box is
modified by a user.

{ CWLIGHT_EDI TOR LS, I1D: 0L, TOP:0OL, HANDLER OL, LI GHT: OBJ_NEW)}
LIGHT specifies the object ID of the new light selection.
Light Modified

Thisisthe type of structure returned when the user has modified alight property.
This event maybe generated continuoudly if the DRAG_EVENTS keyword was set.
See DRAG_EVENTS above.

{ CWLIGHT EDITOR LM |ID: OL, TOP:0L, HANDLER OL}

The value of the light editor will need to be retrieved (i.e.,
CW_LIGHT_EDITOR_GET) in order to determine the extent of the actual user
modification.

CW_LIGHT_EDITOR IDL Reference Guide

Chapter 3: Procedures and Functions

Version History

495

5.3

I ntroduced

6.1

Added TAB_MODE keyword

See Also

CW_LIGHT _EDITOR_GET, CW_LIGHT_EDITOR_SET, IDLgrLight

IDL Reference Guide

CW_LIGHT_EDITOR

496 Chapter 3: Procedures and Functions

CW_LIGHT EDITOR GET

The CW_LIGHT_EDITOR_GET procedure getsthe CW_LIGHT_EDITOR
properties.

Syntax

CW_LIGHT_EDITOR_GET, WidgetID [, DIRECTION_DISABLED=variable]
[, DRAG_EVENTS=variable] [, HIDE_DISABLED=variable]
[, LIGHT=variable] [, LOCATION_DISABLED=variable]
[, TYPE_DISABLED=Vvariable] [, XSIZE=variable] [, Y SIZE=variable]
[, XRANGE=variable] [, YRANGE=variable] [, ZRANGE=variabl€]

Arguments

WidgetID
Thewidget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords
DIRECTION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the direction widget portion of the
compound widget unchangeable by the user. It will appear insensitive and will not
generate an event.

DRAG_EVENTS

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to cause events to be generated continuously while a
dlider in the compound widget is being dragged or when the mouse cursor is being
dragged across the draw widget portion of the compound widget.

When this keyword is set, alarge number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

CW_LIGHT_EDITOR_GET IDL Reference Guide

Chapter 3: Procedures and Functions 497

Note
Under Microsoft Windows, sliders do not generate these events, but behave just like

regular sliders.

HIDE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the hide widget portion of the compound
widget unchangeable by the user.

LIGHT

Set this keyword to a named variable that will contain one or more object references
to IDLgrLight.

LOCATION_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the location widget portion of the compound
widget unchangeable by the user.

TYPE_DISABLED

Set this keyword to a named variable that will contain a boolean value indicating
whether this option has been set to make the light type widget portion of the
compound widget unchangeable by the user.

XRANGE

Set this keyword to a named variable that will contain atwo-element vector defining
the datarangein the x direction.

XSIZE

Set this keyword to a named variable that will contain the width of the drawable area
in pixels.

YRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the datarangein they direction.

IDL Reference Guide CW_LIGHT _EDITOR_GET

498 Chapter 3: Procedures and Functions

YSIZE

Set this keyword to a named variable that will contain the height of the drawable area
in pixels.

ZRANGE

Set this keyword to a named variable that will contain a two-element vector defining
the datarange in the z direction.

Version History

53 Introduced

See Also

CW_LIGHT_EDITOR, CW_LIGHT_EDITOR_SET, IDLgrLight

CW_LIGHT_EDITOR_GET IDL Reference Guide

Chapter 3: Procedures and Functions 499

CW_LIGHT EDITOR SET

The CW_LIGHT_EDITOR procedure setsthe CW_LIGHT_EDITOR properties.

Syntax

CW_LIGHT_EDITOR_SET, WidgetID [, /DIRECTION_DISABLED]
[,/ DRAG_EVENTS] [, /HIDE_DISABLED] [, LIGHT=0bjref(s)]
[, /LOCATION_DISABLED] [, /TYPE_DISABLED] [, XSIZE=pixels|
[, YSIZE=pixels] [, XKRANGE=vector] [, Y RANGE=vector] [, ZRANGE=vector]

Arguments

WidgetID
The widget ID of the CW_ LIGHT_EDITOR compound widget.

Keywords
DIRECTION_DISABLED

Set this keyword to make the direction widget portion of the compound widget
unchangesable by the user. It will appear insensitive and will not generate an event.

DRAG_EVENTS

Set this keyword to cause events to be generated continuously while adlider in the
compound widget is being dragged or when the mouse cursor is being dragged across
the draw widget portion of the compound widget.

When this keyword is set, alarge number of events can be generated. On slower
machines, poor performance can result. Therefore, this option should only be used
when detailed or truly interactive control is required.

Note
Under Microsoft Windows, sliders do not generate these events, but behavejust like

regular sliders.

HIDE_DISABLED

Set this keyword to make the hide widget portion of the compound widget
unchangeabl e by the user. It will appear insensitive and will not generate an event.

IDL Reference Guide CW_LIGHT _EDITOR_SET

500

Chapter 3: Procedures and Functions

LIGHT

Set this keyword to one or more object referencesto IDLgrLight to edit. This will
replace the current set of lights being edited with the list of lights from this keyword.

LOCATION_DISABLED

Set this keyword to make the location widget portion of the compound widget
unchangesable by the user. It will appear insensitive and will not generate an event.

TYPE_DISABLED

Set this keyword to make the light type widget portion of the compound widget
unchangeabl e by the user. It will appear insensitive and will not generate an event.

XRANGE

A two-element vector defining the datarangein the x direction. This keyword is used
to determine the valid range for the light's location and direction properties.

XSIZE
The width of the drawable areain pixels.
YRANGE

A two-element vector defining the datarangein they direction. This keyword is used
to determine the valid range for the light's location and direction properties.

YSIZE
The height of the drawable areain pixels.
ZRANGE

A two-element vector defining the datarange in the z direction. This keyword is used
to determine the valid range for the light's location and direction properties.

Version History

53 Introduced

CW_LIGHT _EDITOR_SET IDL Reference Guide

Chapter 3: Procedures and Functions 501

See Also

CW_LIGHT _EDITOR, CW_LIGHT_EDITOR_GET, IDLgrLight

IDL Reference Guide CW_LIGHT _EDITOR_SET

502 Chapter 3: Procedures and Functions

CW_ORIENT

The CW_ORIENT function creates a compound widget lets you interactively adjust
the three-dimensional drawing transformation and resets the !PT system variable
field to reflect the changed orientation.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw orient.prointheli b subdirectory of the IDL distribution.

Syntax
Result = CW_ORIENT(Parent [, AX=degrees] [, AZ=degrees] [, /[FRAME]
[, TAB_MODE=valug] [, TITLE=string] [, UNAME=string] [, UVALUE=value]
[, XSIZE=width] [, Y SIZE=height])
Return Value

This function returns the widget ID of the newly-created orientation-adjustment
widget.

Arguments
Parent
Thewidget 1D of the parent widget.
Keywords
AX

Theinitia rotation in the X direction. The default is 30 degrees.
AZ

Theinitial rotation in the Z direction. The default is 30 degrees.
FRAME

Set this keyword to draw aframe around the widget.

CW_ORIENT IDL Reference Guide

Chapter 3: Procedures and Functions 503

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_ MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Vaue’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-25: TAB_MODE Keyword Options

Note
In widget applications on the UNIX platform, the Moatif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to changeit isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on al UNIX systems.

TITLE

Thetitle of the widget.

IDL Reference Guide CW_ORIENT

504 Chapter 3: Procedures and Functions

Note
You can use language catalogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_ UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The “user value’ to be assigned to the widget.
XSIZE

Determines the width of the widget. The default is 100.
YSIZE

Determines the height of the widget. The default is 100.
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywordsto the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET _INFO.

Widget Events Returned by the CW_ORIENT Widget

CW_ORIENT only returns events when the three dimensional drawing
transformation has been altered. The !P.T system variable field is automatically
updated to reflect the new orientation.

CW_ORIENT IDL Reference Guide

Chapter 3: Procedures and Functions 505

Version History

Pre4.0 Introduced
6.1 Added TAB_MODE keyword
See Also

CW_ARCBALL, T3D

IDL Reference Guide CW_ORIENT

506 Chapter 3: Procedures and Functions

CW_PALETTE_EDITOR

The CW_PALETTE_EDITOR function creates a compound widget to display and
edit color palettes. The palette editor is abase that contains a drawabl e area to display
the color palette, a set of vectors that represent the palette and an optional histogram.

Note
Two routines associated with the CW_PALETTE_EDITOR compound widget —
CW_PALETTE_EDITOR_GET and CW_PALETTE_EDITOR_SET — do not
create compound widgets themselves, but act on an existing
CW_PALETTE_EDITOR widget.

See“Using the CW_PALETTE_EDITOR” on page 510 for information on the
palette editor’s interface components and interactive capabilities.

Syntax

Result = CW_PALETTE_EDITOR (Parent [, DATA=array] [, FRAME=width]
[, HISTOGRAM=vector] [, /[HORIZONTAL] [, SELECTION=[start, end]]
[, TAB_MODE=valuge] [, UNAME=string] [, UVALUE=valug] [, XSIZE=width]
[, YSIZE=height])

Return Value
This function returns the widget ID of the newly created pal ette editor.
Arguments

Parent

The widget 1D of the parent widget for the new palette editor.
Keywords

DATA

A 3x256 byte array containing theinitial color values for Red, Green and Blue
channels. The value supplied can also be a 4x256 byte array containing the initial
color values and the optional Alpha channel. The value supplied can also be an
IDLgrPalette object reference. If an IDLgrPalette object referenceis supplied it is
used internally and is not destroyed on exit. If an object referenceis supplied the

CW_PALETTE_EDITOR IDL Reference Guide

Chapter 3: Procedures and Functions 507

ALPHA keyword to the CW_PALETTE_EDITOR_SET routine can be used to
supply the data for the optional Alpha channel.

FRAME

The value of this keyword specifies the width of aframe (in pixels) to be drawn
around the borders of the widget. Note that this keyword isonly a*“hint” to the
toolkit, and may be ignored in some instances. The default is no frame.

HISTOGRAM
A 256 element byte vector containing the values for the optional histogram curve.
HORIZONTAL

Set this keyword for a horizontal layout for the compound widget. This consists of
the controlsto the right of the display area. The default is avertical layout with the
controls below the display area.

SELECTION

The selection is atwo element vector defining the starting and ending point of the
selection region of color indexes. The default is[0,255].

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It is not possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

IDL Reference Guide CW_PALETTE_EDITOR

508 Chapter 3: Procedures and Functions

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “ Inheriting the TAB_MODE Value’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-26: TAB_ MODE Keyword Options

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

UNAME

Set this keyword to a string that can be used to identify the widget. You can associate
aname with each widget in a specific hierarchy, and then use that name to query the
widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE

The ‘user value' to be assigned to the widget. Each widget can contain a user-
specified value of any data type and organization. This valueis not used by the
widget in any way, but exists entirely for the convenience of the IDL programmer.
This keyword allows you to set this value when the widget isfirst created. If
UVALUE is not present, the widget's initial user value is undefined.

CW_PALETTE_EDITOR IDL Reference Guide

Chapter 3: Procedures and Functions 509

XSIZE

The width of the drawable areain pixels. The default width is 256.
YSIZE

The height of the drawable areain pixels. The default height is 256.

WIDGET_CONTROL Keywords for Palette Editor

The widget ID returned by this compound widget is actually the ID of the compound
widget's base widget. This means that many keywords to the WIDGET_CONTROL
and WIDGET _INFO routinesthat affect or return information on base widgets can be
used with this compound widget (e.g., UNAME, UVALUE).

GET_VALUE

Set this keyword to a named variable to contain the current value of the widget. A
3xn (RGB) or 4xn (i.e., RGB and ALPHA) array containing the palette is returned.

The value of awidget can be set with the SET_VALUE keyword to this routine.
SET _VALUE

Sets the value of the specified palette editor compound widget. Thiswidget accepts a
3xn (RGB) or 4xn (i.e.,, RGB and ALPHA) array representing the value of the palette
to be set. Another type of argument accepted is an IDLgrPa ette object reference. If
an IDLgrPalette object referenceis supplied it is used internally and is not destroyed
on exit.

Widget Events Returned by the
CW_PALETTE_EDITOR Widget

CW_PALETTE_EDITOR generates events when the selection region is changed and
when the color palette has been modified. There are variations of the pal ette editor
event structure depending on the specific event being reported. All of these structures
contain the standard three fields (1D, TOP, and HANDLER). The different palette
editor event structures are described bel ow.

IDL Reference Guide CW_PALETTE_EDITOR

510

Chapter 3: Procedures and Functions

Selection Moved

Thisisthe type of structure returned when one of the vertical bars that define the
selection region ismoved by a user.

{ CWPALETTE_EDI TOR_ SM |D:OL, TOP:OL, HANDLER OL,
SELECTI ON: [0, 255] }

SELECTION indicates atwo element vector defining the starting and ending point of
the selection region of color indexes.

Palette Edited
Thisisthe type of structure returned when the user has maodified the color palette.
{ CWPALETTE_EDITOR PM |D:0OL, TOP:0L, HANDLER: OL}

The value of the palette editor will need to beretrieved (i.e., WIDGET _CONTROL,
GET_VALUE) in order to determine the extent of the actual user modification.

Using the CW_PALETTE_EDITOR

Graphics Area Components

Reference Color bar

A gray scale color bar is displayed at the top of the graphics area for reference
purposes.

Palette Colorbar

A color bar containing adisplay of the current palette is displayed below the
reference color bar.

Channel and Histogram Display

The palette channel vectors are displayed below the palette colorbar. The Red
channel isdisplayed in red, the Green channel in green, the Blue channel in blue, and
the optional Alpha channel in purple. The optional Histogram vector is displayed in

Cyan.

An areawith awhite background represents the current selection, with gray
background representing the area outside of the current selection. Yellow drag
handles are an additional indicator of the selection endpoints. These selection
endpoints represent the range for some editing operations. In addition, cursor X,Y
values and channel pixel values at the cursor location are displayed in a status area
below the graphics area.

CW_PALETTE_EDITOR IDL Reference Guide

Chapter 3: Procedures and Functions 511

Interactive Capabilities

Color Space

A droplist allows selection of RGB, HSV or HL S color spaces. RGB is the default
color space.

Note
Regardless of the color space in use, the color vectors retrieved with the
GET_VALUE keyword to widget control are alwaysin the RGB color space.

Editing Mode
A droplist allows selection of the editing mode. Freehand is the default editing mode.

Note
Unless noted below, editing operations apply only to the channel vectors currently
selected for editing and apply only to the portion of the vectors within the selection
indicators.

Editing Mode Description

Freehand The user can click and drag in the graphics areato draw a new
curve. Editable channel vectorswill be modified to use the
new curve for that part of the X range within the selection that
was drawn in Freehand mode.

Line Segment A click, drag and release operation defines the start point and
end point of aline segment. Editable channel vectors will be
modified to use the new curve for that part of the X range
within the selection that was drawn in Line Segment mode.

Barrel Shift Click and drag operations in the horizontal direction cause the
editable curves to be shifted right or left, with the portion
which is shifted off the end of selection area wrapping around
to appear on the other side of the selection area. Only the
horizontal component of drag movement is used.

Table 3-27: CW_PALETTE_EDITOR Editing Mode Options

IDL Reference Guide CW_PALETTE_EDITOR

Chapter 3: Procedures and Functions

Editing Mode

Description

Slide

Click and drag operations in the horizontal direction cause the
editable curves to be shifted right or left. Unlike the Barrel
Shift mode, the portion of the curves shifted off the end of the
selection area does not wrap around. Only the horizontal
component of drag movement is used.

Stretch

Click and drag operations in the horizontal direction cause the
editable curves to be compressed or expanded. Only the
horizontal component of drag movement is used.

Table 3-27: CW_PALETTE_EDITOR Editing Mode Options (Continued)

The following table describes the buttons that provide editing operations but do not

require cursor input:

Button Operation

Ramp Causes the selected part of the editable curves to be replaced
with alinear ramp from 0 to 255.

Smooth Causes the selected part of the editable curves to be smoothed.

Posterize Causes the selected part of the editable curves to be replaced
with a series of steps.

Reverse Causes the selected part of the editable curvesto be reversed
in the horizontal direction.

Invert Causes the selected part of the editable curves to be flipped in
the vertical direction.

Duplicate Causes the selected part of the editable curvesto be
compressed by 50% and duplicated to produce two contiguous
copies of the channel vectors within the initial selection.

Load PreDefined | Leadsto additional choices of pre-defined palettes. Loading a

pre-defined palette replaces only the selected portion of the
editable color channels, respecting of the settings of the

sel ection endpoints and editable checkboxes. This allows
loading only a single channel or only a portion of a pre-
defined palette.

Table 3-28: CW_PALETTE_EDITOR Button Operations

CW_PALETTE_EDITOR

IDL Reference Guide

Chapter 3: Procedures and Functions 513

Channel Display and Edit

A row of checkboxes allows the user to indicate which channels of Red, Green, Blue
and the optional Alpha channel should be displayed. A second row of checkboxes
allows the user to indicate which channels should be edited by the current editing
operation. The checkboxes for the Alpha channel will be sensitive only if an Alpha
channel isloaded.

Zoom

Four buttons allow the user to zoom the display of the palette:

Button Description

[Zooms to show the current selection.

+ Zoomsin 50%
- Zooms out 100%
11 Returns the display to the full palette

Table 3-29: Palette Zoom Options

Scrolling of the Palette Window

When the palette is zoomed to a scale greater than 1:1 the scroll bar at the bottom of
the graphics area can be used to view a different part of the palette.

Version History

5.3 I ntroduced
6.1 Added TAB_MODE keyword
See Also

CW_PALETTE_EDITOR_GET, CW_PALETTE_EDITOR_SET, IDLgrPalette

IDL Reference Guide CW_PALETTE_EDITOR

514 Chapter 3: Procedures and Functions

CW_PALETTE_EDITOR GET

The CW_PALETTE_EDITOR_GET procedure getsthe CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_GET, WidgetID [, ALPHA=variable]
[, HISTOGRAM=variabl€]

Arguments
WidgetID
The widget ID of the CW_PALETTE_EDITOR compound widget.
Keywords
ALPHA

Set this keyword to a named variable that will contains the optional apha curve.
HISTOGRAM

Set this keyword to a named variable that will contains the optional histogram curve.

Version History

5.3 I ntroduced

See Also

CW_PALETTE_EDITOR, CW_PALETTE_EDITOR_SET, IDLgrPalette

CW_PALETTE_EDITOR_GET IDL Reference Guide

Chapter 3: Procedures and Functions 515

CW_PALETTE_EDITOR SET

The CW_PALETTE_EDITOR_SET procedure setsthe CW_PALETTE_EDITOR
properties.

Syntax

CW_PALETTE_EDITOR_SET, WdgetID [, ALPHA=byte vector]
[, HISTOGRAM=byte vector]

Arguments

WidgetID

The widget ID of the CW_PALETTE_EDITOR compound widget.
Keywords
ALPHA

A 256 element byte vector that describes the a pha component of the color palette.
The alpha value may also be set to the scalar value zero to remove the alpha curve
from the display.

HISTOGRAM

The histogram is an vector to be plotted below the color palette. This keyword can be
used to display adistribution of color index valuesto facilitate editing the color
palette. The histogram value may also be set to the scalar value zero to remove the
histogram curve from the display.

Version History

53 Introduced

See Also

CW_PALETTE_EDITOR, CW_PALETTE_EDITOR_GET, IDLgrPalette

IDL Reference Guide CW_PALETTE_EDITOR_SET

516 Chapter 3: Procedures and Functions

CW_PDMENU

The CW_PDMENU function creates widget pulldown menus, which can include
sub-menus, from a set of buttons. It has a simpler interface than the XPDMENU
procedure, which it replaces. Events for the individual buttons are handled
transparently, and a CW_PDMENU event returned. This event can return any one of
the following:

* |ndex of the button within the base.
« Widget ID of the button.
+ Name of the button.

¢ Fully qualified name of the button. This allows different sub-menusto contain
buttons with the same name in an unambiguous way.

Only buttons with textual names are handled by this widget. Bitmaps are not
understood.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_pdnenu. pro inthel i b subdirectory of the IDL distribution.

Syntax
Result = CW_PDMENU(Parent, Desc [, /COLUMN] [, /CONTEXT_MENU]
[, DELIMITER=string] [, FONT=valug] [, /MBAR [, /HELP]] [, IDS=variabl€]
[,/RETURN_ID |,/RETURN_INDEX |,/RETURN_NAME|,
/IRETURN_FULL_NAME] [, TAB_MODE=value] [, UNAME=string]
[, UVALUE=valug] [, XOFFSET=valu€] [, YOFFSET=value])
Return Value
This function returns the widget ID of the newly-created pulldown menu widget.
Arguments

Parent

The widget 1D of the parent widget.

CW_PDMENU IDL Reference Guide

Chapter 3: Procedures and Functions 517

Desc

An array of strings or structures. If Desc isan array of strings, each element contains
the flag field, followed by a backsash character, followed by the name of the menu
item, optionally followed by another backslash character and the name of an event-
processing procedure for that element. A string element of the Desc array would look
like:

' n\ item_name
or
' n\item_name\ event_proc

where n isthe flag field and item_name is the name of the menu item. The flag field
isabitmask that controls how the button isinterpreted; appropriate valuesfor the flag
field are shown in the following table. If the event_proc field is present, it is the name
of an event-handling procedure for the menu element and al of its children.

If Descisan array of structures, each structure must have the following definition:
{CWPDMENU_S, flags:0, nane:''}

The nametag is a string field with the following components:
' item_name

or
" item_name\ event_proc

whereitem_name is the name of the menu item. If the event_proc field is present, it is
the name of an event-handling procedure for the menu element and all of its children

The flagsfield is abitmask that controls how the button is interpreted; appropriate
valuesfor the flag field are shown in the following table. Notethat if Descisan array
of structures, you cannot specify individual event-handling procedures for each

element.
Value Meaning
0 This button is neither the beginning nor the end of a pulldown level.
1 This button is the root of a sub-pulldown menu. The sub-buttons start
with the next button.

Table 3-30: Button Flag Bit Meanings

IDL Reference Guide CW_PDMENU

518 Chapter 3: Procedures and Functions

Value Meaning

2 This button is the last button at the current pulldown level. The next
button belongs to the same level as the current parent button. If the
name field is not specified (or is an empty string), no button is created,
and the next button is created one level up in the hierarchy.

3 This button is the root of a sub-pulldown menu, but it is also the last
entry of the current level.

Table 3-30: Button Flag Bit Meanings (Continued)

Keywords
COLUMN

Set this keyword to create a vertical column of menu buttons. The default is to create
ahorizontal row of buttons.

CONTEXT_MENU

Set this keyword to create the pulldown menu within a context-sensitive menu. 1f
CONTEXT_MENU is set, Parent must be the widget 1D of abase widget, which also
hasthe CONTEXT_MENU keyword set. The return value of CW_PDMENU isthe
Parent’swidget ID. If CONTEXT_MENU is set, setting the UNAME or UVALUE
on the same call to CW_PDMENU will override the UNAME or UVALUE values of
the parent base.

For more on creating context menus, see “ Context-Sensitive Menus” in Chapter 30 of
the Building IDL Applications manual and the CONTEXT_MENU keyword to
WIDGET_BASE.

DELIMITER

The character used to separate the parts of afully qualified namein returned events.
The default isto usethe“.” character.

FONT

The name of the font to be used for the button titles. The font specified isa“ device
font” (an X Windows font on Motif systems; a TrueType or PostScript font on
Windows systems). See “About Device Fonts” on page 5136 for details on specifying
names for device fonts. If this keyword is omitted, the default font is used.

CW_PDMENU IDL Reference Guide

Chapter 3: Procedures and Functions 519

HELP

If the MBAR keyword is set, and one of the buttons on the menubar has the label
“help” (case insensitive) then that button is created with the /HEL P keyword to give
it any specia appearance it is supposed to have on a menubar. For example, Motif
expects help buttons to be on the right.

IDS
A named variable in which the button IDs will be stored as alongword vector.
MBAR

Set this keyword to create a menubar pulldown. If MBAR is set, Parent must be the
widget ID of amenubar belonging to atop-level base, and the return value of
CW_PDMENU isthe Parent widget ID. For an example demonstrating the use of the
MBAR keyword, see Example 2 below. Also see the MBAR keyword to
WIDGET_BASE. If MBAR is set, setting the UNAME or UVALUE on the same call
to CW_PDMENU will override the UNAME or UVALUE values of the parent base.

RETURN_ID

If this keyword is set, the VALUE field of returned events will contain the widget ID
of the button.

RETURN_INDEX

If this keyword is set, the VALUE field of returned events will contain the zero-based
index of the button within the base. THIS IS THE DEFAULT.

RETURN_NAME

If this keyword is set, the VALUE field of returned events will be the name of the
selected button.

RETURN_FULL_NAME

Set this keyword and the VALUE field of returned events will be the fully qualified
name of the selected button. This means that the names of all the buttons from the
topmost button of the pulldown menu to the selected one are concatenated with the
delimiter specified by the DELIMITER keyword. For example, if the top button was
named COL ORS, the second level button was named BLUE, and the selected button
was named LIGHT, the returned value would be

COLORS. BLUE. LI GHT

IDL Reference Guide CW_PDMENU

520 Chapter 3: Procedures and Functions

This allows different submenus to have buttons with the same name (e.g.,
COLORS.RED.LIGHT).

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It is not possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the defaullt.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Value’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-31: TAB_MODE Keyword Options

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

CW_PDMENU IDL Reference Guide

Chapter 3: Procedures and Functions 521

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The“user value” to be assigned to the widget. If the MBAR keyword is set, the value
specified for UVALUE is also assigned as the UVALUE of the parent menu (i.e., the
widget specified by the Parent argument in the call to CW_PDMENU).

XOFFSET
The X offset of the widget relative to its parent.
YOFFSET
TheY offset of the widget relative to its parent.
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywordsto the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_PDMENU Widget

CW_PDMENU generates an event structure that specifies the index, widget ID, or
name of the menu item selected with the following definition:

event = { IDOL, TOP:0L, HANDLER OL, VALUE:O }

VALUE iseither the INDEX, ID, NAME, or FULL_NAME of the button, depending
on how the widget was created.

IDL Reference Guide CW_PDMENU

522

Examples

Example 1

Chapter 3: Procedures and Functions

CW_PDMENU

Thefollowing is the description of a menu bar with two buttons: “Colors’ and
“Quit". Colorsisapulldown containing the colors “Red”, “ Green”, Blue’, “Cyan”,
and “Magenta’. Blue is a sub-pulldown containing “Light”, “Medium”, “Dark”,
“Navy”, and “Royal.”

The following small program can be used with the above description to create the
specified menu:

PRO PD_EXAMPLE

desc = ['1\Colors' , $
"O\Red' , $
'"O\Geen , $
"1\Blue' , $
‘O\Light' , $
"O\Medium , $
"O\Dark' , $
"0\ Navy' , $
"2\Royal' , $
"O\Cyan' , $
"2\ Magenta' , $
"2\Quit!]

Create the wi dget:
base = W DGET_BASE()

menu = CW PDMENU(base, desc, /RETURN_FULL_NAME)
W DGET_CONTROL, /REALI ZE, base

;Provide a sinple event handl er:
REPEAT BEG N
ev = W DGET_EVENT(base)
PRI NT, ev.val ue
END UNTIL ev.value EQ "' Quit'
W DGET_CONTROL, /DESTROY, base

END

The Desc array could aso have been defined using a structure for each element. The
following array of structures creates the same menu as the array of strings shown
above. Note, however, that if the Desc array is composed of structures, you cannot
specify individual event-handling routines.

First, make sure CW_PDMENU_S structure is defined:
junk = {CWPDMVENU_S, flags:0, nane:'' }

IDL Reference Guide

Chapter 3: Procedures and Functions

Define the menu:

desc = [{ CW.PDMENU_S,
CW _PDIVENU_S,
CW _PDIVENU_S,
CW _PDIVENU_S,
CW_PDIVENU_S,
CW PDVENU_S,
CW PDVENU_S,
CW PDIVENU_S,
CW _PDIVENU_S,
CW _PDIVENU_S,
CW _PDIVENU_S,
CW PDMVENU_S,

P e N R e R N Rt Rt Rate Rt
NNONOOOORFR OO

Example 2

523

' Col ors'
'Red' },
"G een
'Blue' },
"Light' 1},
"Medium },
"Dark' }, $
"Navy' }, $
"Royal ' }, $
"Cyan' }, $
' Magenta' 1},
"Quit' }]

}.0$

$
b

$
$
$

$

$

This example demonstrates the use of the MBAR keyword to CW_PDMENU to
populate the “ Colors” menu item on amenu bar created using WIDGET_BASE.

PRO nbar _event, event

W DGET_CONTROL, event.
CASE uval
"Quit':
ELSE: PRI NT,
ENDCASE

OF

event . val

END
PRO nbar

; Create the base widg
base
UVALUE=' base')

file_menu = W DGET_BUTTON(bar,
file_bttnl=WDGET_BUTTON(fil e_nenu,

UVALUE=" Quit')

col ors_menu = W DGET_BUTTON(bar,

Define array for col

1

desc = ['O\Red' , $
'O\Geen , $
"1\Blue' , $
"O\Light' , $
' O\ Medi um

IDL Reference Guide

W DCGET_CONTROL,

W DGET_BASE(TI TLE = ' Exanpl ',

id, GET_UVALUE=uval

/ DESTROY, event.top
ue

et:

MBAR=bar, XSIZE=200, $

VALUE='File', [/ MENU)

VALUE=" Quit', $

VALUE=' Col ors', /MENU)

ors nenu itens:

$

CW_PDMENU

524

Chapter 3: Procedures and Functions

"O\Dark' , $
"0\ Navy' , $
"2\Royal' , $
"O\Cyan' , $
"2\ Magenta']

Create colors nenu itenms. Note that the Parent argument is
set to the widget ID of the parent nenu:

col ors = CWPDVENY col ors_mnenu, desc, /MBAR, $
/ RETURN_FULL_NAME, UVALUE=' menu')

W DGET_CONTROL, [/ REALI ZE, base

XMANAGER, ' nmbar', base, /NO BLOCK

END

Version History

Pre4.0 Introduced
6.1 Added TAB_MODE keyword
See Also

CW_BGROUP, WIDGET_DROPLIST, “Pulldown Menus’ in Chapter 30 of the
Building IDL Applications manual

CW_PDMENU IDL Reference Guide

Chapter 3: Procedures and Functions 525

CW_RGBSLIDER

The CW_RGBSLIDER function creates a compound widget that provides three
dlidersfor adjusting color values. The RGB, CMY, HSV, and HL S color systems can
al be used. No matter which color system isin use, the resulting color is always
supplied in RGB, which is the base system for IDL.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_rgbslider. prointheli b subdirectory of the IDL distribution.

Using CW_RGBSLIDER

The CW_RGBSLIDER widget consists of a pulldown menu which allows the user to
change between the supported color systems, and three color adjustment sliders,
allowing the user to select anew color value.
Syntax
Result = CW_RGBSLIDER(Parent [, /CMY |,/HSV |, /HLS|, /RGB]
[,/COLOR_INDEX |, GRAPHICS LEVEL={1]|2}] [, /DRAG] [, /[FRAME]
[, LENGTH=value] [, /RGB] [, TAB_MODE=value] [, UNAME=string]
[, UVALUE=value] [, VALUE=[r, g, b]] [, /VERTICAL])

Return Value
This function returns the widget ID of the newly-created color adjustment widget.
Arguments

Parent

Thewidget 1D of the parent widget.
Keywords

CMY

If set, theinitial color system used is CMY.

IDL Reference Guide CW_RGBSLIDER

526

Chapter 3: Procedures and Functions

COLOR_INDEX

Set this keyword to display a small rectangle with the selected color. The color is
updated as the values are changed. The color initially displayed in this rectangle
corresponds to the value specified with the VALUE keyword. If using Object
Graphics, it is recommended that you set the GRAPHICS LEVEL keyword to 2, in
which case the COLOR_INDEX keyword isignored.

DRAG

Set this keyword and events will be generated continuously when the sliders are
adjusted. If not set, events will only be generated when the mouse button is rel eased.
Note: On slow systems, /DRAG performance can be inadeguate. The default is
DRAG=0.

FRAME
If set, aframe will be drawn around the widget. The default is FRAME = 0.
GRAPHICS LEVEL

Set this keyword to 2 to use Object Graphics. Set to 1 for Direct Graphics (the
default). If set to 2, asmall rectangleis displayed with the selected color. The color is
updated as the values are changed. The color initially displayed in this rectangle
corresponds to the value specified with the VALUE keyword. If this keyword is set,
the COLOR_INDEX keyword isignored.

HSV

If set, theinitial color system used is HSV.
HLS

If set, theinitial color system used isHLS.
LENGTH

The length of the dliders. The default = 256.
RGB

If set, theinitial color system used is RGB. Thisisthe default.

CW_RGBSLIDER IDL Reference Guide

Chapter 3: Procedures and Functions 527

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_ MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Vaue’ in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-32: TAB_MODE Keyword Options

Note
In widget applications on the UNIX platform, the Moatif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to changeit isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on al UNIX systems.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget

IDL Reference Guide CW_RGBSLIDER

528 Chapter 3: Procedures and Functions

hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE
The “user value’ to be assigned to the widget.
VALUE

Set this keyword to a 3-element [r, g, b] vector representing the initial RGB value for
the CW_RGBSLIDER widget. If the GRAPHICS _LEVEL keyword is set to 2, the
color swatch will also initially display this RGB value.

VERTICAL

If set, the diderswill be oriented vertically. The default is VERTICAL = 0.
Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See " Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_RGBSLIDER
Widget

Thiswidget generates event structures with the following definition:
event = {ID:OL, TOP:OL, HANDLER OL, R OB, G 0B, B:OB }

The'R’, ‘G’, and ‘B’ fields contain the Red, Green and Blue components of the
selected color. Note that CW_RGBSLIDER reports back the Red, Green, and Blue
values no matter which color system is selected.

CW_RGBSLIDER IDL Reference Guide

Chapter 3: Procedures and Functions

Version History

529

Pre4.0

Introduced

6.1

Added TAB_MODE keyword

See Also

CW_CLR_INDEX, XLOADCT, XPALETTE

IDL Reference Guide

CW_RGBSLIDER

530 Chapter 3: Procedures and Functions

CW_TMPL

The CW_TMPL procedure is atemplate for compound widgets that use the
XMANAGER. Use thistemplate instead of writing your compound widgets from
“scratch”. Thistemplate can befound inthefilecw_t mpl . prointhelib
subdirectory of the IDL distribution.

Syntax

Result = CW_TMPL(Parent [, TAB_MODE=value] [, UNAME=string]
[, UVALUE=valug])

Arguments

Parent

The widget 1D of the parent widget of the new compound widget.
Keywords
TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

CW_TMPL IDL Reference Guide

Chapter 3: Procedures and Functions 531

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “ Inheriting the TAB_MODE Value” in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.

2 Navigate only onto the widget.

3 Navigate only off of the widget.

Table 3-33: TAB_MODE Keyword Options
Note

In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of thefirst widget
with the specified name.

UVALUE

A user-specified value for the compound widget.

IDL Reference Guide

CW_TMPL

532 Chapter 3: Procedures and Functions

Version History

Pre4.0 Introduced
6.1 Added TAB_MODE keyword
See Also
XMNG_TMPL

CW_TMPL IDL Reference Guide

Chapter 3: Procedures and Functions 533

CW_ZOOM

The CW_ZOOM function creates a compound widget that displays two images: an
original image in one window and a zoomed portion of the original image in another.
The user can select the center of the zoom region, the zoom scale, the interpolation
style, and the method of indicating the zoom center.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cw_zoom prointhel i b subdirectory of the IDL distribution.

Using CW_ZOOM

The value of the CW_ZOOM widget is the original, un-zoomed image to be
displayed (atwo-dimensional array). To change the contents of the CW_ZOOM
widget, use the command:

W DGET_CONTROL, id, SET_VALUE = array

wherei d isthe widget ID of the CW_ZOOM widget and ar r ay isthe image array.
The value of CW_ZOOM cannot be set until the widget has been realized. Note that
the size of the original window, set with the XSIZE and Y SIZE keywordsto
CW_ZOOM, must be the size of the input array.

To return the current zoomed image as displayed by CW_ZOOM in the variable
ar r ay, use the command:

W DGET_CONTROL, id, GET_VALUE = array
Syntax
Result = CW_ZOOM(Parent [, /[FRAME] [, MAX=scal€] [, MIN=scal€]
[, RETAIN={0]1|2}] [, SAMPLE=value] [, SCALE=valug]
[, TAB_MODE=valug] [, /TRACK] [, UNAME=string] [, UVALUE=valug]
[, XSIZE=width] [, X_SCROLL_SIZE=width] [, X_ZSIZE=zoom widith]
[, YSIZE=height] [, Y_SCROLL_SIZE=height] [, Y _ZSIZE=zoom height])
Return Value

This function returns the widget ID of the newly-created zoom widget.

IDL Reference Guide CW_ZOOM

534 Chapter 3: Procedures and Functions

Arguments

Parent

The widget 1D of the parent widget.
Keywords
FRAME

If set, aframe will be drawn around the widget. The default is FRAME = 0.
MAX

The maximum zoom scale, which must be greater than or equal to 1. The default is
20.

MIN
The minimum zoom scale, which must be greater than or equal to 1. The default is 1.
RETAIN

Set this keyword to zero, one, or two to specify how backing store should be handled
for both windows. RETAIN=0 specifies no backing store. RETAIN=1 requests that
the server or window system provide backing store. RETAIN=2 specifiesthat IDL
provide backing store directly. See “Backing Store” on page 4954 for details.

SAMPLE

Set to zero for bilinear interpolation, or to a non-zero value for nearest neighbor
interpolation. Bilinear interpolation gives higher quality results, but requires more
time. The default is 0.

SCALE

Theinitia integer scale factor to use for the zoomed image. The default is SCALE =
4. The scale must be greater than or equal to 1.

TAB_MODE

Set this keyword to one of the values shown in the table below to determine how the
widget hierarchy can be navigated using the Tab key. The TAB_MODE setting is
inherited by lower-level bases and child widgets unlessit is explicitly set on an
individual widget.

CW_zOOM IDL Reference Guide

Chapter 3: Procedures and Functions 535

Note
It isnot possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.

Valid settings are:

Value Description

0 Disable navigation onto or off of the widget. Thisis the default.
Child widgets automatically inherit the tab mode of the parent
base as described in “Inheriting the TAB_MODE Vaue” in
Chapter 30 of the Building IDL Applications manual.

1 Enable navigation onto and off of the widget.
2 Navigate only onto the widget.
3 Navigate only off of the widget.

Table 3-34: TAB_MODE Keyword Options

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is aways zero, and any attempt to change it isignored when running
awidget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

TRACK

Set this keyword and events will be generated continuously as the cursor is moved
across the original image. If not set, events will only be generated when the mouse
button isreleased. Note: On slow systems, /TRACK performance can be inadequate.
The default is 0.

UNAME
Set this keyword to a string that can be used to identify the widget in your code. You

can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

IDL Reference Guide CW_ZOOM

536 Chapter 3: Procedures and Functions

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_ UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE
The “user value’ to be assigned to the widget.
XSIZE

The width of the window (in pixels) for the original image. The default is XSIZE =
500. Note that XSIZE must be set to the width of the original image array for the

image to display properly.
X_SCROLL_SIZE

The width of the visible part of the original image. This may be smaller than the
actual width controlled by the X SIZE keyword. The default is O, for no scroll bar.

X _ZSIZE
The width of the window for the zoomed image. The default is 250.
YSIZE

The height of the window (in pixels) for the original image. The default is 500. Note
that Y SIZE must be set to the height of the original image array for the image to

display properly.
Y _SCROLL_SIZE

The height of the visible part of the original image. This may be smaller than the
actual height controlled by the Y SIZE keyword. The default is O, for no scroll bar.

Y _ZSIZE
The height of the window for the zoomed image. The default is 250.
Keywords to WIDGET_CONTROL and WIDGET _INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

CW_zOOM IDL Reference Guide

Chapter 3: Procedures and Functions 537

In addition, you can use the GET_VALUE and SET_VALUE keywords to
WIDGET_CONTROL to obtain or set the value of the zoom widget. The value of the
CW_ZOOM widget isthe original, un-zoomed image to be displayed (atwo-
dimensional array). To change the contents of the CW_ZOOM widget, use the
command:

W DGET_CONTROL, id, SET_VALUE = array

wherei d isthe widget ID of the CW_ZOOM widget and ar r ay isthe image array.
The value of CW_ZOOM cannot be set until the widget has been realized. Note that
the size of the original window, set with the XSIZE and Y SIZE keywordsto
CW_ZOOM, must be the size of the input array.

To return the current zoomed image as displayed by CW_ZOOM in the variable
ar r ay, use the command:

W DGET_CONTROL, id, GET_VALUE = array

See “Creating a Compound Widget” in Chapter 28 of the Building IDL Applications
manual for a more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ZOOM Widget

When the “ Report Zoom to Parent” button is pressed, this widget generates event
structures with the following definition:

event = {ZOOM EVENT, |D:0OL, TOP:OL, HANDLER OL, $
XSI ZE: OL, YSIZE: OL, XO0:0L, YO:0L, X1:0L, Y1:0L }

This specifies the dimensions of the zoomed image and the corresponding
coordinates within the original image. The XSIZE and Y SIZE fields contain the
dimensions of the zoomed image. The X0 and Y O fields contain the coordinates of
the lower left corner of the original image, and the X1 and Y 1 fields contain the
coordinates of the upper right corner of the original image.

Examples

The following code samplesillustrate a use of the CW_ZOOM widget. First, create
an event-handler. Note that clicking on the widget's “Zoom” button displays IDL's
help output on the console.

PRO wi dzoom event, event
W DGET_CONTROL, event.id, GET_UVALUE=uval ue

CASE uval ue OF
'ZOOM : HELP, /STRUCT, event

IDL Reference Guide CW_ZOOM

538 Chapter 3: Procedures and Functions

' DONE' : W DCET_CONTROL, event.top, /DESTROY
ENDCASE

END
Next, create the widget program:
PRO wi dzoom

OPENR, |un, FILEPATH(' people.dat', $
SUBDIR = ['exanples',"data']), /GET_LUN

i mmge=BYTARR(192, 192)

READU, |un, inmage

FREE_LUN, |un

sz = Sl ZE(i mage)

base=W DGET_BASE(/ COLUWN)

zoonmFCW ZOOM base, XSl ZE=sz[1], YSIZE=sz[2], UVALUE='ZOOM)
done=W DGET_BUTTON(base, VALUE=' Done', UVALUE=' DONE)

W DCET_CONTROL, base, /REALIZE

W DGET_CONTROL, zoom SET_VALUE=i nage
XMANAGER, 'wi dzoom, base

END

Once you have entered these programs, type “widzoom” at the IDL command prompt
to run the widget application.

Version History

Pre4.0 Introduced
6.1 Added TAB_MODE keyword
See Also

ZOOM, ZOOM_24

CW_zOOM IDL Reference Guide

Chapter 3: Procedures and Functions 539

DataMiner Routines

The IDL DataMiner is an Open Database Connectivity (ODBC) interface that allows

IDL usersto access and manipulate information from a variety of database
management systems.

For information, see the Chapter 3, “ IDL DataMiner API” in the DataMiner Guide
manual.

IDL Reference Guide DataMiner Routines

540 Chapter 3: Procedures and Functions

DBLARR

The DBLARR function create a double-precision, floating-point vector or array of
the specified dimensions.

Syntax
Result = DBLARR(D[, ..., Dg] [, /INOZERO])
Return Value
Returns a double-precision, floating-point vector or array.
Arguments
Di
Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified.
Keywords
NOZERO

Normally, DBLARR sets every element of the result to zero. If NOZERO is set, this
zeroing is not performed and DBLARR executes faster.

Examples

To create D, an 3-element by 3-element, double-precision, floating-point array with
every element set to 0.0, enter:

D = DBLARR(3, 3)

Version History

Origind Introduced

DBLARR IDL Reference Guide

Chapter 3: Procedures and Functions 541

See Also

COMPLEXARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULONG64ARR, ULONARR

IDL Reference Guide DBLARR

542 Chapter 3: Procedures and Functions

DCINDGEN

The DCINDGEN function creates a complex, double-precision, floating-point array
with the specified dimensions. Each element of the array hasitsreal part set to the
value of its one-dimensional subscript. The imaginary part is set to zero.

Syntax
Result = DCINDGEN(D4 [, ..., Dg])
Return Value

Returns a complex, double-precision, floating-point array of the specified
dimensions.

Arguments
Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either ascalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new

array.
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

DCINDGEN IDL Reference Guide

Chapter 3: Procedures and Functions 543

Examples

To create DC, a4-element vector of complex values with the real parts set to the
value of their subscripts, enter:

DC = DCl NDGEN(4)

Version History

4.0 Introduced

See Also

BINDGEN, CINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN, SINDGEN,
UINDGEN, UL64INDGEN, ULINDGEN

IDL Reference Guide DCINDGEN

544 Chapter 3: Procedures and Functions

DCOMPLEX

The DCOMPLEX function returns double-precision complex scalars or arrays given
one or two scalars or arrays. If only one parameter is supplied, the imaginary part of
theresult is zero, otherwise it is set to the value of the Imaginary parameter.
Parameters are first converted to double-precision floating-point. If either or both of
the parameters are arrays, the result is an array, following the same rules as standard
IDL operators. If three parameters are supplied, DCOMPLEX extracts fields of data

from Expression.

Syntax

Result = DCOMPLEX(Real [, Imaginary])

or
Result = DCOMPLEX(Expression, Offset, D4 [, ..., Dg])

Return Value

Returns a double-precision complex value or an array given one or two scalars or
arrays. If only one parameter is supplied, the imaginary part of the result is zero,
otherwise it is set to the value of the Imaginary parameter. If either or both of the
parameters are arrays, the result is an array, following the same rules as standard IDL
operators. If three or more parameters are supplied, COMPLEX extractsfields of data
from Expression.

Returns double-precision complex scalars or arrays given one or two scalars or
arrays.

Arguments
Real
Scalar or array to be used as the rea part of the complex result.
Imaginary

Scalar or array to be used as the imaginary part of the complex resuilt.

DCOMPLEX IDL Reference Guide

Chapter 3: Procedures and Functions 545

Expression

The expression from which datais to be extracted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as complex data. See the
description in Chapter 13, “Working with Datain IDL” in the Building IDL
Applications manual for details.

D;

When extracting fields of data, the D; arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The D; arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If asingle argument is specified, it can be either ascalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from astring argument, it is possible that the string does not contain
avalid floating-point value and no conversion is possible. The default action in such

casesisto print awarning message and return 0. The ON_IOERROR procedure can

be used to establish a statement to be jumped to in case of such errors.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the |CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for a singleinvocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide DCOMPLEX

546 Chapter 3: Procedures and Functions

Examples

Create acomplex array from two integer arrays by entering the following commands:
Create the first integer array:
A=11,223]

Create the second integer array:
B =14,5, 6]

Make A the real parts and B the inmaginary parts of the new
conpl ex array:
C = DCOVPLEX(A, B)

See how the two arrays were conbi ned:
PRINT, C

IDL prints:

(1.0000000, 4.0000000)(2.0000000, 5.0000000)
(3.0000000, 6.0000000)

Therea and imaginary parts of the complex array can be extracted as follows:

Print the real part of the conplex array C

PRI NT, 'Real Part: ', REAL_PART(C)
Print the imaginary part of the conplex array C
PRI NT, 'Imaginary Part: ', | MAG NARY(C)
IDL prints:
Real Part: 1. 0000000 2.0000000 3.0000000
| magi nary Part: 4.0000000 5.0000000 6.0000000

Version History

4.0 I ntroduced

See Also

BYTE, COMPLEX, CONJ, DOUBLE, FIX, FLOAT, IMAGINARY, LONG,
LONG64, REAL_PART, STRING, UINT, ULONG, ULONG64

DCOMPLEX IDL Reference Guide

Chapter 3: Procedures and Functions 547

DCOMPLEXARR

The DCOMPLEXARR function returns a complex, double-precision, floating-point
vector or array.

Syntax
Result = DCOMPLEXARR(D [, ..., Dg] [, /NOZERQ])

Return Value

Returns a complex, double-precision, floating-point vector or array of the specified

dimensions.
Arguments
Di
Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified.
Keywords
NOZERO
Normally, DCOMPLEXARR sets every element of the result to zero. If the
NOZERO keyword is set, this zeroing is not performed, and DCOMPLEXARR
executes faster.
Examples

To create an empty, 5-element by 5-element, complex array DC, enter:
DC = DCOVPLEXARR(5, 5)

Version History

4.0 Introduced

IDL Reference Guide DCOMPLEXARR

548 Chapter 3: Procedures and Functions

See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULON64ARR, ULONARR

DCOMPLEXARR IDL Reference Guide

Chapter 3: Procedures and Functions 549

DEFINE_KEY

The DEFINE_KEY procedure programs the keyboard function Key with the string
Value, or with one of the actions specified by the available keywords.

DEFINE_KEY isprimarily intended for use with IDL’s UNIX command line
interface, but it has limited applications in the Microsoft Windows environment as
well.

Note
Key bindings for the UNIX graphical interface (IDLDE) can be created via X
Window resources. See IDL’s resource file, located in your IDL distribution and
described in Chapter 5, “ Customizing IDL on Motif Systems” in the Using IDL
manual, for details on key bindings.

Syntax

DEFINE_KEY, Key [, Value] [, /IMATCH_PREVIOUS] [, /NOECHO]
[, TERMINATE]

UNIX-Only Keywords: [, /BACK_CHARACTER] [, /BACK_WORD]

[, /CONTROL |, /ESCAPE] [, /DELETE_CHARACTER] [, /DELETE_CURRENT]
[,/DELETE_EOL] [, /DELETE_LINE] [, /DELETE_WORD] [, /END_OF_FILE]
[,/END_OF LINE][,/ENTER_LINE] [, /FORWARD_CHARACTER]

[, IFORWARD_WORD] [, /INSERT_OVERSTRIKE_TOGGLE] [, INEXT_LINE]
[, /IPREVIOUS _LINE] [, /RECALL] [, /REDRAW] [, /START_OF LINE]

Arguments

Key

A scalar string containing the name of afunction key to be programmed. IDL
maintains an internal list of function key names and the escape sequences they send.
Different keys are available for mapping in the UNIX command-line interface and
the Windows IDL Devel opment Environment, as described bel ow.

IDL Reference Guide DEFINE_KEY

550

Chapter 3: Procedures and Functions

UNIX — Under UNIX, DEFINE_KEY alows you to set the values of two distinctly
different types of keys:

Control characters. Any of the 26 control characters (CTRL+A through
CTRL+Z) can be associated with specific actions by specifying the
CONTROL keyword. Control characters are the unprintable ASCI| characters
at the beginning of the ASCII character set. They are usually entered by
holding down the Control key while the corresponding letter key is pressed.

Function keys. Most terminals (and terminal emulators) send escape sequences
when afunction key is pressed. An escape sequenceis a sequence of characters
starting the ASCII Escape character. Escape sequences follow strict rules that
allow applications such as IDL to determine when the sequence is compl ete.
For instance, the left arrow key on most machines sends the sequence
<ESC>[D. The available function keys and the escape sequences they send
vary from keyboard to keyboard; IDL cannot be built to recognize all of the
different keyboardsin existence. The ESCAPE keyword allows you to
program IDL with the escape sequences for your keyboard. When you press
the function key, IDL will recognize the sequence and take the appropriate
action.

If Key isnot already on IDL'sinternal list, you must use the ESCAPE keyword to
specify the escape sequence, otherwise, Key alone will suffice. The available function
keys and the escape sequences they send vary from keyboard to keyboard; IDL’s
internal list already contains definitions for most keys. The following table describes
the standard key definitions.

DEFINE_KEY

Editing Key Function
Ctrl+A Move cursor to start of line
Ctrl+B Move cursor |eft one word
Ctrl+D EOF if current lineis empty, EOL otherwise
Ctrl+E Move to end of line
Ctrl+F Move cursor right one word
Ctrl+K Erase from the cursor to the end of theline
Ctrl+N Move back one linein the recall buffer
Ctrl+R Retype current line

Table 3-35: Standard Key Definitions for UNIX

IDL Reference Guide

Chapter 3: Procedures and Functions

551

Editing Key Function
Ctrl+U Delete from current position to start of line
Ctrl+W Delete previous word
Ctrl+X Delete current character

Backspace, Delete

Delete previous character

ESC-I

Overstrike/insert toggle

ESC-Delete Delete previous word

Up Arrow Move back onelinein the recall buffer

Down Arrow Move forward one line in the recall buffer

Left Arrow Move |eft one character

Right Arrow Move right one character

R13 Move cursor left one word (Sun keyboards)

R15 Move cursor right one word (Sun keyboards)
Mext Recall thefirst line containing text. If text is blank,

recall the previousline

Other Characters

Insert character at the current cursor position

Table 3-35: Standard Key Definitions for UNIX (Continued)

Windows — Under Windows, function keys F2, F4, and F12 can be customized.

In IDL for Windows, three special variables can be used to expand the current
mouse selection, the current line, or the current filename into the output of

defined keys.

Variable

Expansion

%f

filename of the currently-selected IDL Editor window

%l

number of the current linein an IDL Editor window

%s

Currently-selected text from an IDL Output Log or
Editor window

Table 3-36: Variable expansions for defined keys

IDL Reference Guide

DEFINE_KEY

552 Chapter 3: Procedures and Functions

For example, to define F2 as akey that executesan IDL PRINT command with
the current mouse selection as its argument, use the command:

DEFI NE_KEY, 'F2', 'PRINT, "%8"'

Dragging the mouse over any text in an IDL Editor or Output Log window and
pressing F2 causes the selected text to be given as the argument to the IDL
PRINT procedure. The % and % variables can be used in asimilar fashion.

Value

The scalar string that will be printed (asif it had been typed manually at the
keyboard) when Key is pressed. If Value is not present, and no function is specified

for the key with one of the keywords, the key is cleared so that nothing happens when
itispressed.

Keywords

BACK_CHARACTER

This keyword is only available on UNIX platforms.

Set this keyword to program Key to move the current cursor position left one
character.

BACK_WORD

This keyword is only available on UNIX platforms.

Set this keyword to program Key to move the current cursor position left one word.

CONTROL

This keyword is only available on UNIX platforms.

Set this keyword to indicate that Key is the name of a control key. The default is for
Key to define afunction key escape sequence. To view the names used by IDL for the
control keys, type the following at the Command Line:

HELP, /ALL_KEYS

Warning

The CONTROL and ESCAPE keywords are mutually exclusive and cannot be
specified together.

DEFINE_KEY IDL Reference Guide

Chapter 3: Procedures and Functions 553

DELETE_CHARACTER

This keyword is only available on UNIX platforms.
Set this keyword to program Key to delete the character to the left of the cursor.

DELETE_CURRENT

This keyword is only available on UNIX platforms.

Set this keyword to program Key to delete the character directly underneath the
Cursor.

DELETE_EOL

This keyword is only available on UNIX platforms.

Set this keyword to program Key to delete from the cursor position to the end of the
line.

DELETE_LINE

This keyword is only available on UNIX platforms.
Set this keyword to program Key to delete all charactersto the left of the cursor.

DELETE_WORD

This keyword is only available on UNIX platforms.
Set this keyword to programs Key to delete the word to the left of the cursor.

END_OF LINE

This keyword is only available on UNIX platforms.
Set this keyword to program Key to move the cursor to the end of the line.

END_OF FILE

This keyword is only available on UNIX platforms.

Set this keyword to program Key to exit IDL if the current line is empty, and to end
the current input line if the current line is not empty.

ENTER_LINE
This keyword is only available on UNIX platforms.

IDL Reference Guide DEFINE_KEY

554

Chapter 3: Procedures and Functions

Set this keyword to program Key to enter the current line (i.e., the action normally
performed by the “Return” key).

ESCAPE

This keyword is only available on UNIX platforms.

A scalar string that specifies the escape sequence that correspondsto Key. See
“Defining New Function Keys' on page 556 for further details.

Warning
The CONTROL and ESCAPE keywords are mutually exclusive and cannot be
specified together.

FORWARD_CHARACTER

This keyword is only available on UNIX platforms.

Set this keyword to program Key to move the current cursor position right one
character.

FORWARD_WORD

This keyword is only available on UNIX platforms.

Set this keyword to program Key to move the current cursor position right one word.

INSERT_OVERSTRIKE_TOGGLE

This keyword is only available on UNIX platforms.

Set this keyword to program Key to toggle between “insert” and “ overstrike” mode.
When characters are typed into the middle of aline, insert mode causes the trailing
characters to be moved to the right to make room for the new ones. Overstrike mode
causes the new characters to overwrite the existing ones.

MATCH_PREVIOUS

Set this keyword to program Key to prompt the user for a string, and then search the
saved command buffer for the most recently issued command that contains that
string. If amatch isfound, the matching command becomes the current command,
otherwise the last command entered is used. Under UNIX, the default match key is
the up caret “~" key when pressed in column 1.

DEFINE_KEY IDL Reference Guide

Chapter 3: Procedures and Functions 555

NEXT_LINE

This keyword is only available on UNIX platforms.

Set this keyword to program Key to move forward one command in the saved
command buffer and make that command the current one.

NOECHO

Set this keyword to enter the Value assigned to Key when pressed, without echoing
the string to the screen. Thisfeature is useful for defining keys that perform such
actions as erasing the screen. If NOECHO is set, TERMINATE is also assumed to be
Set.

PREVIOUS_LINE

This keyword is only available on UNIX platforms.

Set this keyword to program Key to move back one command in the saved command
buffer and make that command the current one.

RECALL

This keyword is only available on UNIX platforms.

Set this keyword to program Key to prompt the user for acommand number. The
saved command corresponding to the entered number becomes the current command.
In order to view the currently saved commands and the number currently associated
with each, enter the IDL command:

HELP, /RECALL COMVANDS
Example

The RECALL operation remembers the last command number entered, and if the
user simply presses return, it recalls the command currently associated with that
saved number. Since the number associated with a given command increases by one
each time anew command is saved, this feature can be used to quickly replay a
sequence of commands.

IDL> PRINT, 1

1

I DL> PRI NT, 2

2

| DL> HELP, /RECALL_COMVANDS
Recal | buffer length: 20

1 PRI NT, 2

2 PRINT, 1

IDL Reference Guide DEFINE_KEY

556 Chapter 3: Procedures and Functions

User presses key tied to RECALL.
| DL>

Line 2 is requested.
Recal | Line #: 2

Saved command 2 isrecalled.

I DL> PRINT, 1
1

User presses return.
Recal | Line #:
Saved command 2 isrecalled again.

I DL> PRI NT, 2
2

REDRAW

This keyword is only available on UNIX platforms.
Set this keyword to program Key to retype the current line.

START _OF LINE

This keyword is only available on UNIX platforms.
Set this keyword to program Key to move the cursor to the start of the line.

TERMINATE

If thiskeyword is set, and Value is present, pressing Key terminates the current input
operation after its assigned value is entered. Essentially, an implicit carriage return is
added to the end of Value.

Examples

Defining New Function Keys

Under UNIX, IDL can handle arbitrary function keys. When adding a definition for a
function key that is not built into IDL’s default list of recognized keys, you must use
the ESCAPE keyword to specify the escape sequence it sends. For example, to add a
function key named “HELP” which sends the escape sequence <Escape>[28~, use
the command:

DEFI NE_KEY, 'HELP', ESCAPE = '\033[28~

DEFINE_KEY IDL Reference Guide

Chapter 3: Procedures and Functions 557

This command adds the HEL P key to the list of keys understood by IDL. Since only
the key name and escape sequence were specified, pressing the HEL P key will do
nothing. The Value argument, or one of the keywords provided to specify command
line editing functions, could have been included in the above statement to program it
with an action.

Once a key is defined using the ESCAPE keyword, it is contained in the internal list
of function keys. It can then be subsequently redefined without specifying the escape
sequence.

It is convenient to include commonly used key definitions in a startup file, so that
they will always be available. See “ Startup Files’ in Chapter 1 of the Using IDL
manual .

IDL is preloaded with definitions for most widely used function keys and their escape
sequences, so it is generally not necessary to specify the ESCAPE keyword. For
example, to program key “F2” to redraw the current line:

DEFI NE_KEY, 'F2', /REDRAW

The CONTROL keyword alters the action that IDL takes when it sees the specified
characters defining the control keys. IDL may not be able to ater the behavior of
some control characters. For example, CTRL+S and CTRL+Q are usually reserved
by the operating system for flow control. Similarly, CTRL+Z is usually the UNIX
suspend character.

Example

CTRL+D isthe UNIX end-of-file character. It is a common UNIX convention
(followed by IDL) for programs to quit upon encountering CTRL+D. However,
CTRL+D isalso used by some text editors to delete characters. To disable IDL
default handling of CTRL+D, type the following:

DEFI NE_KEY, /CONTROL, '~D
To print areminder of how to exit IDL properly, type the following:

DEFI NE_KEY, /CONTROL, '~D, "print, 'Enter EXIT to quit IDL'", $
/ NOECHO, / TERM NATE

To use CTRL+D to delete characters, type the following:
DEFI NE_KEY, /CONTROL, '~D, /DELETE_CURRENT

IDL Reference Guide DEFINE_KEY

558

Version History

Chapter 3: Procedures and Functions

Origind Introduced

See Also

GET_KBRD

DEFINE_KEY

IDL Reference Guide

Chapter 3: Procedures and Functions 559

DEFINE_MSGBLK

The DEFINE_MSGBLK procedure defines and loads a new message block into the
currently running IDL session. Messages are issued from a message block using the
MESSAGE procedure, which handles the details of IDL message display, including
proper formatting, setting the values of the 'ERROR_STATE system variable, and
displaying traceback information if execution halts. See MESSAGE for details.

A message block is a collection of messages that are loaded into IDL as a single unit.
Each block contains the messages required for a specific application. At startup, IDL
contains asingleinternal message block named IDL_MBLK _CORE, which contains
the standard messages required by the IDL system. Dynamically loadable modules
(DLMs) usually define additional message blocks for their own needs when they are
loaded. At the IDL programming level, the DEFINE_MSGBLK and
DEFINE_MSGBLK_FROM_FILE procedures can be used to define and load
message blocks. You can use the HELP, /IMESSAGES command to see the currently
defined message blocks.

Syntax

DEFINE_MSGBLK, BlockName, ErrorNames, ErrorFormats
[, IGNORE_DUPLICATE] [, PREFIX = PrefixSr]

Note
IDL will force the values of the message bock name, the individual message names,
and any message prefix string to upper case before installing the message block.
Because IDL is generally case-insensitive, you do not need to use upper case when
supplying these values to the DEFINE._MSGBLK or MESSAGE procedures. The
values stored in the 'ERROR_STATE system variable will, however, be upper-case
strings. If you do string comparisons with values in 'ERROR_STATE, you should
take this case-folding into account.

Arguments

BlockName

A string giving the name of the message block to be defined. Block names must be
unique within the IDL system. We recommend that you follow the advice given in
Chapter 6, “Library Authoring” in the Building IDL Applications manual when
selecting the message block name in order to avoid name conflicts. Use of the
PREFIX keyword is also recommended to enforce a consistent naming convention.

IDL Reference Guide DEFINE_MSGBLK

560 Chapter 3: Procedures and Functions

ErrorNames

An array of strings giving the names of the messages defined by the message block.
ErrorFormats

An array of strings giving the formats for the messages defined by the message block.
Note that the format string can include both static text (displayed every time the error
is displayed) and dynamic text (specified when the error is generated by a call to the
MESSAGE procedure). Each format is matched with the corresponding namein
ErrorNames. For this reason, Error Formats should have the same number of
elements as ErrorNames. We recommend the use of the PREFIX keyword to enforce
a consistent naming scheme for your messages.

Error formats are simplified pri nt f -style format strings. For more information on
format strings, see “ C printf-Style Quoted String Format Code” in Chapter 18 of the
Building IDL Applications manual.

Keywords
IGNORE_DUPLICATE

Attempts to define a given BlockName more than once in the same IDL session
usually cause DEFINE_MSGBLK to issue an error and stop execution of the IDL
program. Specify IGNORE_DUPLICATE to cause DEFINE_MSGBLK to quietly
ignore attempts to redefine a message block. In this case, no error isissued and
execution continues. The original message block remains installed and available for
use.

PREFIX

It isacommon and recommended practice to give each message name defined in
ErrorNames a common unique prefix that identifiesit as an error from a specific
message block. However, specifying this prefix in each entry of ErrorNamesis
tedious and error prone. The PREFIX keyword can be used to specify a prefix string
that will be added to each element of ErrorNames.

DEFINE_MSGBLK IDL Reference Guide

Chapter 3: Procedures and Functions 561

Examples
This example defines a message block called ROADRUNNER that contains 2
messages:
name = [' BADPLAN , ' RRNOTCAUGHT']
fnt = ['Bad plan detected: %.', 'Road Runner not captured."']
DEFI NE_MSGBLK, PREFIX = 'ACME_M ', 'ROADRUNNER , nare, fnt

Once this message block is loaded, the ACME_M_BADPLAN message can be
issued using the following statement:

MESSAGE, NAME = 'acnme_m badpl an', BLOCK = 'roadrunner', $
' Expl odi ng bridge while standi ng underneath’

This MESSAGE statement produces the output similar to:

% Bad pl an detected: Exploding bridge while standi ng underneat h.
% Execution halted at: $MAI N

The IDL command:
HELP, /STRUCTURES, !ERROR STATE
can be used to examine the effect of this message on IDL’s error state.

Version History

55 Introduced

See Also

DEFINE_MSGBLK_FROM_FILE, MESSAGE

IDL Reference Guide DEFINE_MSGBLK

562 Chapter 3: Procedures and Functions

DEFINE_ MSGBLK_FROM_FILE

The DEFINE_MSGBLK_FROM_FILE procedure reads the definition of a message
block from afile, and uses DEFINE_MSGBLK to load it into the currently running
IDL session. Messages are issued from a message block using the MESSAGE
procedure, which handles the details of IDL message display, including proper
formatting, setting the values of the 'ERROR_STATE system variable, and
displaying traceback information if execution halts. See MESSAGE for details.

Note
For large message blocks, DEFINE_ MSGBLK_FROM_FILE can be more
convenient than DEFINE_MSGBLK.

Format of Message Definition Files

A message definition file has a simple structure designed to ease the specification of
message blocks. Any line starting with the character @ specifies information about
the message block. Any line not starting with an @ character isignored, and can be
used for comments, documentation, notes, or other human readable information. All
such text isignored by DEFINE_ MSGBLK_FROM_FILE.

There are three different types of lines starting with @ allowed in a message
definition file:

@IDENT name

Specifies the name of the message block being defined. There should be exactly one
such linein every message definition file. If the BLOCK keyword to
DEFINE_MSGBLK_FROM_FILE isspecified, the @IDENT lineisignored and can
be omitted. RSI recommends always specifying an @IDENT line.

Note
IDL will force the string specified by the @IDENT line to upper case before
installing the message block. You do not need to use upper case when supplying the
@IDENT name string, but 'ERROR_STATE.BLOCK will always contain an
upper-case string.

@PREFIX PrefixStr

If present, specifies a prefix string to be applied to the beginning of each message
name in the message block. There should be at most one such line in every message
definition file. If the PREFIX keyword to DEFINE_MSGBLK_FROM_FILE is

DEFINE_MSGBLK_FROM_FILE IDL Reference Guide

Chapter 3: Procedures and Functions 563

specified, the @PREFIX lineisignored and can be omitted. RSI recommends always
specifying an @PREFIX line.

Note
IDL will force the string specified by the @PREFI X line to upper case before
installing the message block. You do not need to use upper case when supplying the
@PREFIX PrefixSr string, but 'ERROR_STATE.BLOCK will always contain an
upper-case string.

@ MessageName "MessageFormat"

Specifies a single message name and format string pair. The format string should be
delimited with double quotes. A message definition file should contain one such line
for every message it defines.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
define_nsgbl k_fromfile.prointhelib subdirectory of the IDL distribution.

Syntax

DEFINE_MSGBLK_FROM_FILE, Filename [, BLOCK = BlockName]
[, IGNORE_DUPLICATE] [, PREFIX = Prefix3r] [, /VERBOSE]

Note
IDL will force the values of the message bock name, the individual message names,
and any message prefix string to upper case before installing the message block.
Because IDL is generaly case-insensitive, you do not need to use upper case when
supplying these values to the DEFINE_MSGBLK_FROM_FILE or MESSAGE
procedures. The values stored in the 'lERROR_STATE system variable will,
however, be upper-case strings. If you do string comparisons with valuesin
IERROR_STATE, you should take this case-folding into account.

Arguments

Filename

The name of thefile containing the message block definition. The contents of thisfile
must be formatted as described in the section “Format of Message Definition Files’.

IDL Reference Guide DEFINE_MSGBLK_FROM_FILE

564 Chapter 3: Procedures and Functions

Keywords

BLOCK

If present, this keyword specifies the name of the message block. Normally, this
keyword is not specified, and an @IDENT line in the message file specifies the name
of the block. We recommend that you follow the advice given in Chapter 6, “Library
Authoring” in the Building IDL Applications manual when selecting thisnamein
order to avoid name clashes. Use of a prefix is also recommended to enforce a
consistent naming convention.

Note
IDL will force the string specified by the BLOCK keyword to upper case before
installing the message block. You do not need to use upper case when supplying the
BLOCK string to the DEFINE_MSGBLK_FROM_FILE procedure, but
IERROR_STATE.BLOCK will always contain an upper-case string.

IGNORE_DUPLICATE

Attempts to define a given BlockName more than once in the same IDL session
usually cause DEFINE_MSGBLK to issue an error and stop execution of the IDL
program. Specify IGNORE_DUPLICATE to cause DEFINE_MSGBLK to quietly
ignore attempts to redefine a message block. In this case, no error isissued and
execution continues. The origina message block remains installed and available for
use.

PREFIX

If present, this keyword specifies a prefix string to be applied to the beginning of each
message name in the message block. Normally, this keyword is not specified, and an
@PREFIX line in the message file specifies the prefix string. We recommend the use
of a prefix to enforce a consistent naming scheme for your messages.

Note
IDL will force the string specified by the PREFIX keyword to upper case before

installing the message block. You do not need to use upper case when supplying the
PREFIX string to the DEFINE_MSGBLK_FROM_FILE procedure, but
IERROR_STATE.MSG_PREFIX will always contain an upper-case string.

DEFINE_MSGBLK_FROM_FILE IDL Reference Guide

Chapter 3: Procedures and Functions 565

VERBOSE

If set, causes DEFINE_MSGBLK_FROM_FILE to print informational messages
describing the message block loaded.

Examples

The following example uses the same message block asin the example given for
“DEFINE_MSGBLK” on page 559, but uses a message definition file to create the
message block. Thefirst step is to create a message definition file called

r oadr uner . nsg containing the following lines:

Message definition file for ROADRUNNER nessage bl ock
@ DENT r oadrunner
@PREFI X ACME_M_
@ BADPLAN "Bad pl an detected: %s."
@ RRNOTCAUGHT " Road Runner not captured.”

Use the following statement to load in the message block:
DEFI NE_MSGBLK_FROM FI LE, 'roadrunner. nsg’
Note

A message block can only be defined once during an IDL session. If you see a
message that |ooks like this:

% Attenpt to install an existing nessage bl ock: ROADRUNNER
% Execution halted at: $MAIN$

the ROADRUNNER message block has already been defined. You must either exit
and restart IDL or issue the .FULL_RESET_SESSION executive command.

Once this message block is loaded, the ACME_M_BADPLAN message can be
issued using the following statement:

MESSAGE, NAME = 'acne_m badpl an', BLOCK='roadrunner', $
' Expl odi ng bridge whil e standi ng underneath'

This MESSAGE statement produces the output similar to:

% Bad pl an detected: Exploding bridge while standi ng underneat h.
% Execution halted at: $MAI N

The IDL command:
HELP, /STRUCTURES, !ERROR_STATE
can be used to examine the effect of this message on IDL's error state.

IDL Reference Guide DEFINE_MSGBLK_FROM_FILE

566 Chapter 3: Procedures and Functions

Version History

55 I ntroduced

See Also

DEFINE_MSGBLK, MESSAGE

DEFINE_MSGBLK_FROM_FILE IDL Reference Guide

Chapter 3: Procedures and Functions 567

DEFROI

The DEFROI function defines an irregular region of interest of an image using the
image display system and the cursor and mouse. DEFROI only works for interactive,
pixel oriented devices with a cursor and an exclusive or writing mode. Regions may
have at most 1000 vertices.

Warning
DEFROI does not function correctly when used with draw widgets. See
CW_DEFROQI.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
defroi.prointhelib subdirectory of the IDL distribution.

Using DEFROI

After caling DEFROI, click in the image with the left mouse button to mark points
on the boundary of the region of interest. The points are connected in sequence.
Alternatively, press and hold the left mouse button and drag to draw a curved region.
Click the middle mouse button to erase points. The most recently-placed point is
erased first. Click the right mouse button to close the region. The function returns
after the region has been closed.

Syntax

Result = DEFROI(&, Sy [, Xverts, Yverts] [, /INOREGION] [, /NOFILL]
[, /RESTORE] [, XO=device_coord] [, Y O=device_coord] [, ZOOM=factor])

Return Value

Returns a vector of subscripts of the pixelsinside the region. The lowest bit in which
the write mask is enabled is changed.

Arguments
Sx, Sy
Integers specifying the horizontal and vertical size of image, in pixels.
Xverts, Yverts

Named vectors that will contain the vertices of the enclosed region.

IDL Reference Guide DEFROI

568 Chapter 3: Procedures and Functions

Keywords

NOREGION

Set this keyword to inhibit the return of the pixel subscripts.
NOFILL

Set this keyword to inhibit filling of the defined region on completion.
RESTORE

Set this keyword to restore the display to its original state upon completion.
X0

Set thiskeyword equal to X coordinate of the lower left corner of the displayed image
(in device coordinates). If omitted, the default value (0) is used.

YO

Set thiskeyword equal to Y coordinate of the lower left corner of the displayed image
(in device coordinates). If omitted, the default value (0) is used.

Z00OM

Set this keyword equal to the zoom factor. If not specified, avalue of 1 is assumed.
Example

; Create an i mage:
TVSCL, DI ST(200, 200)

; Call DEFRO . The cursor becones active in the graphics w ndow.
; Define a region and click the right nouse button:
X = DEFRO (200, 200)

; Print subscripts of points included in the defined region:
PRI NT, X

Version History

Original Introduced

DEFROI IDL Reference Guide

Chapter 3: Procedures and Functions 569

See Also

CW_DEFROI

IDL Reference Guide DEFROI

570 Chapter 3: Procedures and Functions

DEFSYSV

The DEFSY SV procedure creates a new system variable called Name initialized to
Value.

Syntax
DEFSY SV, Name, Value [, Read_Only] [, EXISTS=variabl€]
Arguments

Name

A scalar string containing the name of the system variable to be created. All system
variable names must begin with the character ‘!".

Value

An expression from which the type, structure, and initial value of the new system
variableis taken. Value can be a scalar, array, or structure.

Read_ Only

If the Read_Only argument is present and nonzero, the value of the newly-created
system variable cannot be changed (i.e., the system variable is read-only, like the ! Pl
system variable). Otherwise, the value of the new system variable can be modified.

Keywords

EXISTS

Set this keyword to a named variable that returns 1 if the system variable specified by

Name exists. If this keyword is specified, Value can be omitted. For example, the

following commands could be used to check that the system variable XY Z exists:
DEFSYSV, '!XYZ', EXISTS =i

IFi EQ1 THEN PRINT, '!XYZ exists' ELSE PRINT, $
"1 XYZ does not exist'

DEFSYSV IDL Reference Guide

Chapter 3: Procedures and Functions 571

Examples

To create a new, floating-point, scalar system variable called 'NEWVAR with an
initial value of 2.0, enter:

DEFSYSV, ' ! NEWAR , 2.0
You can both define and use a system variable within a single procedure:

PRO f oo
DEFSYSV, '!foo', $
"Rocky, watch me pull a squirrel out of ny hat!"’

Print !foo after defining it:

PRI NT, !foo
END

Version History

Original Introduced

See Also

Appendix D, “System Variables’

IDL Reference Guide DEFSYSV

572 Chapter 3: Procedures and Functions

DELVAR

The DELVAR procedure deletes variables from the main IDL program level.
DELVAR frees any memory used by the variable and removes it from the main
program’s symbol table. The following restrictions apply:

¢ DELVAR can only be called from the main program level.

» If amain program is created with the .RUN or .RNEW command, then each
time DELVAR is called, thismain program is erased. Variables that are not

deleted remain unchanged.
Syntax
DELVAR, Vj, ..., V,,
Arguments
Vi

One or more named variables to be deleted.
Examples

Suppose that the variable Q is defined at the main program level. Q can be deleted by
entering:

DELVAR, Q

Version History

Pre4.0 I ntroduced

See Also

TEMPORARY

DELVAR IDL Reference Guide

Chapter 3: Procedures and Functions 573

DENDRO_PLOT

Given ahierarchical tree cluster, usually created by the CLUSTER_TREE function,
the DENDRO_PLOT procedure draws atwo-dimensional dendrite plot on the current
direct graphics device.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
dendro_pl ot. prointhel i b subdirectory of the IDL distribution.

Syntax

DENDRO_PLOT, Clusters, Linkdistance [, LABEL_CHARSIZE=value]
[, LABEL_CHARTHICK=value] [, LABEL_COLOR=value]
[, LABEL_NAMES=vector] [, LABEL_ORIENTATION=value]
[, LINECOLOR=value] [, ORIENTATION={1j2|3}4}] [, /OVERPLOT]

Graphics Keywords: [, BACKGROUND=color_index] [, CHARSIZE=valu€]
[, CHARTHICK=integer] [, CLIP=[Xg, Yo, X1, Y1]] [, COLOR=valug] [, /DATA |
,IDEVICE |, /NORMAL] [, FONT=integer] [, LINESTYLE={0]1|2|3|4|5}]
[, /INOCLIP] [, INODATA] [, INOERASE] [, POSITION=[Xg, Yo, X1, Y111
[, PSYM=integer{0to 10}] [, SUBTITLE=string] [, SYMSIZE=valu€] [, /T3D]
[, THICK=valug] [, TICKLEN=valug] [, TITLE=string]
[,{X|Y |Z}CHARSIZE=value]
[,{X|Y |Z}GRIDSTY LE=integer{ 0 to 5}]

AX Y | ZMARGIN=[left, right]]

AX Y | Z} MINOR=integer]

|'Y | Z}RANGE=[min, max]]

| Y | Z}STY LE=value]

| Y | Z} THICK=valug]

|Y | Z} TICK_GET=variable]

|Y | Z} TICKFORMAT=string]

| Y | Z} TICKINTERVAL= value]

| Y | Z} TICKLAYOUT=scalar]

|'Y | Z} TICKLEN=value]

| Y | Z} TICKNAME=string_array]

I

I

I

I

Y | Z} TICK S=integer]

Y | Z} TICKUNITS=string]
Y | Z} TICKV=array]

: Y | Z} TITLE=string]

, ZVALUE=valug{0to 1}]

{
{X
{X
{X
{X
{X
X
{X
{X
{X
{X
{X
{X
{X

— e e e e e e e e e

IDL Reference Guide DENDRO_PLOT

574

DENDRO_PLOT

Chapter 3: Procedures and Functions

Arguments

Clusters

A 2-by-(m-1) input array containing the cluster indices, where mis the number of
itemsin the original dataset. Thisarray is usually the result of the CLUSTER_TREE

function.

Linkdistance
An (m-1)-element input vector containing the distances between cluster items, as
returned by the Linkdistance argument to the CLUSTER_TREE function.

Keywords

LABEL_CHARSIZE

The overal character size for the leaf labels when Hershey or TrueType fonts are
selected. This keyword does not apply when hardware fonts are selected. If this
keyword is omitted, then the value of the CHARSIZE keyword is used.

LABEL_CHARTHICK

An integer value specifying the line thickness of the vector drawn font characters for
the leaf 1abels. This keyword has no effect when used with the hardware drawn fonts.
If this keyword is omitted, then the value of the CHARTHICK keyword is used.

LABEL_COLOR

The color index of the leaf |abels. If this keyword is omitted, then the value of the
COLOR keyword is used.

LABEL_NAMES

Set this keyword to an m-element string array containing the leaf labels. If this
keyword is omitted then leaves are labelled using integers 0...m-1. If thiskeyword is
set to a scalar value then the leaf 1abels are not drawn.

Note
The LABEL_NAMES should be input in their original order, corresponding to the

mitems of the original dataset. DENDRO_PLOT will automatically rearrange the
labels to match the order of the leaf nodes in the dendrogram.

IDL Reference Guide

Chapter 3: Procedures and Functions 575

LABEL_ORIENTATION

Specifies the counterclockwise angle in degrees from horizontal of the text baseline
for the leaf labels. If this keyword is omitted then labels are drawn horizontally,
unless ORIENTATION=0 or 2, in which case the |abels are drawn vertically if the
largest label has more than two characters.

LINECOLOR

The color index of the dendrite lines. If this keyword is omitted, then the value of the
COLOR keyword is used.

ORIENTATION
Set this keyword to an integer giving the orientation of the dendrite plot. Possible
values are:
Value Orientation
0 (Default): Bottom-to-top. Leaf nodes are drawn at the bottom.
1 Left-to-right. Leaf nodes are drawn at the left.
2 Top-to-bottom. Leaf nodes are drawn at the top.
3 Right-to-left. Leaf nodes are drawn at the right.
Table 3-37: ORIENTATION Values
OVERPLOT

Set this keyword to avoid creating a new dendrite plot and axes. Instead, the
dendrogram lines and leaf |abels are drawn on the existing plot window.

Note
If OVERPLOT is specified, then for ORIENTATION = 0 or 2, most keywords
which affect the Y axis areignored. Conversely, for ORIENTATION = 1 or 3, most
keywords which affect the X axis are ignored.

Graphics Keywords Accepted

See Appendix B, “ Graphics Keywords’ for the description of the following graphics
and plotting keywords:

IDL Reference Guide DENDRO_PLOT

576

Chapter 3: Procedures and Functions

BACKGROUND, CHARSIZE, CHARTHICK, CLIP, COLOR, DATA, DEVICE,
FONT, LINESTYLE, NOCLIP, NODATA, NOERASE, NORMAL, POSITION,
PSYM, SUBTITLE, SYMSIZE, T3D, THICK, TICKLEN, TITLE,
[XYZ]CHARSIZE, [XYZ]GRIDSTYLE, [XYZ]MARGIN, [XYZ]MINOR,
[XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK, [XYZ] TICKFORMAT,
[XYZ]TICKINTERVAL, [XYZ]TICKLAYOUT, [XYZ] TICKLEN,
[XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS, [XYZ]TICKV,
[XYZ]TICK_GET, [XYZ]TITLE, ZVALUE

Note

For ORIENTATION=0 or 2, the XRANGE, XTICKLEN, XTICKS, XTICKYV, and
XTICKNAME keywords areignored. For ORIENTATION=L1 or 3, the YRANGE,
YTICKLEN, YTICKS, YTICKYV, and Y TICKNAME keywords are ignored.

Note

For the dendrite plot the default valuesfor XSTYLE and YSTYLE are 1.

Example

DENDRO_PLOT

; Gven a set of points in two-di nensional space.
m = 20
data = 7*RANDOWMN(-1, 2, m)

; Conpute the Euclidean di stance between each point.
di stance = DI STANCE MEASURE(dat a)

; Compute the cluster analysis.
clusters = CLUSTER TREE(di stance, |inkdistance, LINKAGE = 2)

DENDRO PLOT, clusters, linkdistance, $
PCSITION = [0.08, 0.1, 0.48, 0.9], $
XSTYLE 9, YSTYLE =9, $
XTI TLE "Leaf', YTITLE = 'Di stance'

DENDRO PLOT, clusters, linkdistance, $
ORI ENTATI ON = 1, /NCERASE, $
PCsSI TION=[0. 56, 0.1, 0.96, 0.9], $
XSTYLE 9, YSTYLE =9, $
XTI TLE 'Di stance', YTITLE = ' Leaf'

IDL Reference Guide

Chapter 3: Procedures and Functions 577

=10l x|

Distance
]

4151 2116 81470 31NMET1281819513 & 5 10 15
Leaf Distance

Figure 3-33: Dendroplot

Version History

6.1 Introduced

See Also

CLUSTER_TREE, DENDROGRAM, DISTANCE_MEASURE

IDL Reference Guide DENDRO_PLOT

578 Chapter 3: Procedures and Functions

DENDROGRAM

Given ahierarchical tree cluster, usually created by the CLUSTER_TREE function,
the DENDROGRAM procedure constructs adendrogram and returns a set of vertices
and connectivity that can be used to visualize the dendrite plot.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
dendro_pl ot. prointhel i b subdirectory of the IDL distribution.

Syntax

DENDROGRAM, Clusters, Linkdistance, Outverts, Outconn
[, LEAFNODES=variable]

Arguments

Clusters

A 2-by-(m-1) input array containing the cluster indices, where m is the number of
itemsin the original dataset. Thisarray is usually the result of the CLUSTER_TREE
function.

Linkdistance

An (m-1)-element input vector containing the distances between cluster items, as
returned by the Linkdistance argument to the CLUSTER_TREE function.

Outverts

Set this argument to a named variable that will contain a 2-dimensional array of
floating-point vertices that make up the dendrogram.

Outconn

Set this argument to a named variable that will contain an output array of
connectivity values. The Outverts and Outconn arguments can be passed directly to
IDLgrPolyline to construct the dendrite plot.

DENDROGRAM IDL Reference Guide

Chapter 3: Procedures and Functions

Keywords

LEAFNODES

579

Set this keyword to a named variable that will return a vector of integers giving the
order of leaf nodes within the dendrogram. The LEAFNODES keyword is useful for

labeling the nodes in a dendrite plot.

Example

; Gven a set of points in two-dinensional space.
m= 20
DATA = 7*RANDOMN(-1, 2, m

; Compute the Euclidean distance between each point.

di stance = DI STANCE MEASURE(dat a)

; Conpute the cluster analysis.

clusters = CLUSTER TREE(di stance, |inkdistance, LINKAGE=2)

; Create the dendrogram

DENDROGRAM cl usters, |inkdistance, outverts, outconn, $

LEAFNCDES = LEAFNCDES
PRI NT, STRTRI M LEAFNCDES, 2)

OPCLY = OBJ_NEW' I DLgrPolyline', outverts, $
POLYLI NES = out conn)

LOC = FLTARR(2, m

Lod 0, *] = FI NDGEN(m

OTEXT = OBJ_NEW' | DLgr Text', STRTRI M LEAFNCDES, 2),

ALI GNVENT = 1, VERTICAL_ALIGN = 0.5, $

BASELINE = [0,1,0], UPDIR=[-1,0,0], $

CHAR DIM = [1,1], LOCATIONS = | oc)
OAXIS = OBJ_NEW'IDLgrAxis', 1, /EXACT, $

LOCATION = [-1,0,0], RANCGE = [0, MAX(Ilinkdistance)])
OAXI S -> GetProperty, TICKTEXT = oTick
OrlCK -> SetProperty, CHAR DM = [1, 1]

OVODEL = OBJ_NEW' | DLgr Model ')
OVODEL -> Add, oPoly

OVCODEL -> Add, oText

OVCDEL -> Add, O0AXis

XOBJVI EW oModel

When this codeisrun, IDL prints:
41512116914 17 0 3 10 16 7 12 8 18 19 5 13

IDL Reference Guide

DENDROGRAM

580 Chapter 3: Procedures and Functions

=10l x|

File Edit View

| | [alels

14
12
10
8
[
4
2
0 @

TUrNTOMTRONOONUDD

|5

Figure 3-34: Dendrogram Plot

Version History

6.1 Introduced

See Also

CLUSTER_TREE, DENDRO_PLOT, DISTANCE_MEASURE

DENDROGRAM IDL Reference Guide

Chapter 3: Procedures and Functions 581

DERIV

The DERIV function performs numerical differentiation using 3-point, Lagrangian
interpolation.

Syntax
Result = DERIV([X,] Y)
Return Value

Returns the derivative of the numerical differentiation.

Arguments
X
Differentiate with respect to this variable. If omitted, unit spacing for Y (i.e., Xi =)
is assumed.
Y
The variable to be differentiated.
Examples
X=1[0.1, 0.3 0.4, 0.7, 0.9]
Y=[1.2, 2.3, 3.2, 4.4, 6.6]
PRI NT, DERI V(Y)
PRI NT, DERI V(X Y)
IDL prints:

1. 20000 1. 00000 1. 05000 1. 70000 2.70000
3. 16666 7.83333 7.75000 8. 20000 13. 8000

Version History

Original Introduced

IDL Reference Guide DERIV

582 Chapter 3: Procedures and Functions

See Also

DERIVSIG

DERIV IDL Reference Guide

Chapter 3: Procedures and Functions 583

DERIVSIG

The DERIV SIG function computes the standard deviation of a derivative as found by
the DERIV function, using the input variables of DERIV and the standard deviations
of those input variables.

Syntax

Result = DERIVSIG([X, Y, Sigy,] Sigy)
Return Value

Returns the standard deviation of a derivative as found by the DERIV function.
Arguments

X

Differentiate with respect to this variable. If omitted, unit spacing for Y (i.e., Xi =)
IS assumed.

Y
The variable to be differentiated. Omit if X is omitted.
Sigx

The standard deviation of X (either vector or constant). Use “0.0” if the abscissais
exact; omit if X isomitted.

Sigy

The standard deviation of Y. Sgy must be avector if the other arguments are omitted,
but may be either avector or a constant if X, Y, and Sgx are supplied.

Keywords

None.

IDL Reference Guide DERIVSIG

584

Version History

Chapter 3: Procedures and Functions

Pre4.0

I ntroduced

See Also

DERIV

DERIVSIG

IDL Reference Guide

Chapter 3: Procedures and Functions 585

DETERM

The DETERM function computes the determinant of an n by n array. LU
decomposition is used to represent the input array in triangular form. The determinant
is then computed as the product of diagonal elements of the triangular form. Row
interchanges are tracked during the LU decomposition to ensure the correct sign.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
det erm prointhel i b subdirectory of the IDL distribution.

Note
If you are working with complex inputs, usethe LA_ DETERM procedure instead.

Syntax
Result = DETERM(A [, /CHECK] [, /DOUBLE] [, ZERO=valug])
Return Value
Returns the determinant of an n by n array
Arguments
A

Ann by nsingle- or double-precision floating-point array.
Keywords
CHECK

Set this keyword to check A for singularity. The determinant of asingular array is
returned as zero if this keyword is set. Run-time errors may result if Aissingular and
this keyword is not set.

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

IDL Reference Guide DETERM

586 Chapter 3: Procedures and Functions

ZERO

Use this keyword to set the absolute value of the floating-point zero. A floating-point
zero on the main diagonal of atriangular array resultsin a zero determinant. For
single-precision inputs, the default value is 1.0 x 10°8. For doubl e-precision inputs,
the default valueis 1.0 x 10712, Setti ng this keyword to a value less than the default
may improve the precision of the resullt.

Examples

Define an array A
A=][[2.0, 1.0, 1.0], $
0.0], $

[4.0, -6.0,
[-2.0, 7.0, 2.0]]

; Conpute the deterninant:
PRI NT, DETERM A)
IDL prints:

-16. 0000

Version History

Original Introduced

See Also

COND, INVERT, LA_DETERM

DETERM IDL Reference Guide

Chapter 3: Procedures and Functions 587

DEVICE

The DEVICE procedure provides device-dependent control over the current graphics
device (as set by the SET_PLOT routine). The IDL graphics procedures and
functions are device-independent. That is, IDL presents the user with a consistent
interface to all devices. However, most devices have extra abilities that are not
directly available through thisinterface. DEVICE is used to access and control such
abilities. It is used by specifying various keywords that differ from device to device.

See Appendix A, “IDL Direct Graphics Devices’ for a description of the keywords
available for each graphics device.

Syntax

Note
Each keyword to DEVICE is followed by the device(s) to which it applies.

DEVICE

[, /AVANTGARDE |, /BKMAN |, /COURIER |, /[HELVETICA |, /ISOLATIN1 |,
/PALATINO |, /SCHOOLBOCK |,/SYMBOL |, /TIMES|, /ZAPFCHANCERY |,
IZAPFDINGBATS { PS}]

[, /AVERAGE_LINES{REGIS}]

[, /BINARY |,/NCAR |, /TEXT {CGM}]

[, BITS PER PIXEL={1]|2|4|8}{PS}]

[, /BOLD{PS}]

[, /BOOK{PS}]

[,/BYPASS TRANSLATION{WIN, X}]

[, /CLOSE{Z}]

[, /CLOSE_DOCUMENT{PRINTER}]

[, /CLOSE_FILE{CGM, HP, METAFILE, PCL, PS, REGIS, TEK}]

[, ICMYK{PS}]

[,/COLOR{PCL, PS}]

[, COLORS=valug{ CGM, TEK}]

[, COPY =[Xsource, Ysource, cols, rows, Xdest, Ydest [, Window_index]]{ WIN, X}]
[, /CURSOR_CROSSHAIR{WIN, X}]

[, CURSOR_IMAGE=value{ 16-element short int vector} { WIN, X}]

[, CURSOR_MASK=value{WIN, X}]

[, /CURSOR_ORIGINAL{WIN, X}]

[, CURSOR_STANDARD=valueg{ WIN: arrow=32512,

I-beam=32513, hourglass=32514, black cross=32515, up arrow=32516,

IDL Reference Guide DEVICE

588 Chapter 3: Procedures and Functions

size(Windows)=32640, icon(Windows)=32641, size NW-SE=32642, size NE-
SW=32643, size E-W=32644, size N-S=32645}{ X: one of the valuesin file
cursorfonts.h} |

[, CURSOR_XY=[x,y][{ WIN, X}]

[, IDECOMPOSED{WIN, X}]

[, IDIRECT_COLOR{X}]

[, EIECT={0]| 1| 2}{HP}]

[, ENCAPSULATED={0 | 1}{PS}]

[, ENCODING={1 (binary) | 2 (text) | 3 (NCAR binary)}{ CGM}]

[, FILENAME=filename{ CGM, HP, METAFILE, PCL, PS, REGIS, TEK}]
[, IFLOYD{PCL, X}]

[, FONT_INDEX=integer{ PS}]

[, FONT_SIZE=points{ PS}]

[, GET_CURRENT_FONT=variable{ METAFILE, PRINTER, WIN, X}]
[, GET_DECOMPOSED=variable{ WIN, X}]

[, GET_FONTNAMES=variable{ METAFILE, PRINTER, WIN, X}]

[, GET_FONTNUM=variable{ METAFILE, PRINTER, WIN, X}]

[, GET_GRAPHICS FUNCTION=variable{WIN, X, Z}]

[, GET_PAGE_SIZE=variable{ PRINTER}]

[, GET_SCREEN_SIZE=variable{ WIN, X}]

[, GET_VISUAL_DEPTH=variable{WIN, X}]

[, GET_VISUAL_NAME=variable{ WIN, X}]

[, GET_WINDOW_POSITION=variable{ WIN, X}]

[, GET_WRITE_MASK=variable{ X, Z}]

[, GIN_CHARS=number_of characters{ TEK}]

[, GLYPH_CACHE=number_of_glyphs{ METAFILE, PRINTER, PS, WIN, Z}]
[, INCHES{HPR, PCL, METAFILE, PRINTER, PS}]

[, /INDEX_COLOR{METAFILE, PRINTER}]

[, ITALIC{PS}]

[, /LANDSCAPE |, /PORTRAIT{HP, PCL, PRINTER, PS}]

[, LANGUAGE_LEVEL={1]|2}{PS}]

[,/DEMI |, /LIGHT |,/MEDIUM |, /NARROW |, /OBLIQUE{PS}]

[, OPTIMIZE={0| 1| 2}{PCL}] [, /ORDERED{PCL, X}]

[, OUTPUT=scalar string{ HP, PS}]

[, IPIXELS{PCL}]

[, PLOT_TO=logical unit num{ REGIS, TEK}]
[,/PLOTTER_ON_OFFHP}]

[, /POLYFILL{HP}]

[, PRE_DEPTH=value{ PS}]

[, PRE_XSIZE=width{ PS}]

[, PRE_Y SIZE=height{ PS}]

DEVICE IDL Reference Guide

Chapter 3: Procedures and Functions 589

[, /PREVIEW{PS}]

[, PRINT_FILE=filename{ WIN}]

[, /PSEUDO_COLOR{X}]

[, RESET_STRING=string{ TEK}]

[, RESOLUTION=value{ PCL}]

[, RETAIN={0| 1] 2}{WIN, X}]

[, SCALE_FACTOR=value{ PRINTER, PS}]

[, SET_CHARACTER_SIZE=[font size, line spacing]{ CGM, HP, METAFILE, PCL,
PS, REGIS, TEK, WIN, X, Z}]

[, SET_COLORMA P=value{ 14739-element byte vector}{ PCL}]
[, SET_COLORS=value{ 2 to 256}{ Z}]

[, SET_FONT=scalar string{ METAFILE, PRINTER, PS, WIN, Z}]
[, SET_GRAPHICS FUNCTION=code{0 to 15}{ WIN, X, Z}]

[, SET_RESOLUTION=[width, height]{Z}]

[, SET_STRING=string{ TEK}]

[, SET_TRANSLATION=variable{ X}]

[, SET_WRITE_MASK=value{ 0 to 2"-1 for n-bit system}{ X, Z}]
[, STATIC_COLOR=value{ bits per pixel}{ X}]

[, STATIC_GRAY =valug{ bits per pixel}{ X}]

[, 'TEK4014{ TEK}]

[, ITEK4100{ TEK}]

[, THRESHOLD=value{ PCL, X}]

[, TRANSLATION=variable{ WIN, X}]

[, TRUE_COL OR=value{ bits per pixel}{ METAFILE, PRINTER, X}]
[,/ TT_FONT{METAFILE, PRINTER, PS, WIN, X, Z}]

[, TTY{REGIS, TEK}]

[,/VT240|,/VT241|,/VT340 |, /VT341{REGIS}]

[, WINDOW_STATE=variable{WIN, X}]

[, XOFFSET=valug{ HP, PCL, PRINTER, PS}]

[, XON_XOFF={0 | 1 (default)}{ HP}]

[, XSIZE=width{HP, METAFILE, PCL, PRINTER, PS}]

[, YOFFSET=valueg{ HP, PCL, PRINTER, PS}]

[, YSIZE=height{ HP, PCL, METAFILE, PRINTER, PS}]

[, Z_ BUFFERING={0 | 1 (default)}{Z}]

Device Keywords

See Appendix A, “IDL Direct Graphics Devices’ for the description of the following
device keywords:

AVANTGARDE, AVERAGE_LINES, BINARY, BITS PER_PIXEL, BKMAN,
BOLD, BOOK, BYPASS TRANSLATION, CLOSE, CLOSE_DOCUMENT,

IDL Reference Guide DEVICE

590

Chapter 3: Procedures and Functions

CLOSE_FILE, CMYK, COLOR, COLORS, COPY, COURIER,
CURSOR_CROSSHAIR, CURSOR_IMAGE, CURSOR_MASK,
CURSOR_ORIGINAL, CURSOR_STANDARD, CURSOR_XY, DECOMPOSED,
DEMI, DIRECT_COLOR, EJECT, ENCAPSULATED, ENCODING, FILENAME,
FLOYD, FONT_INDEX, FONT_SIZE, GET_CURRENT_FONT,
GET_DECOMPOSED, GET_FONTNAMES, GET_FONTNUM,
GET_GRAPHICS_FUNCTION, GET_PAGE_SIZE, GET_SCREEN_SIZE,
GET_VISUAL_DEPTH, GET_VISUAL_NAME, GET_WINDOW_POSITION,
GET_WRITE_MASK, GIN_CHARS, GLYPH_CACHE, HELVETICA, INCHES,
INDEX_COLOR, ISOLATINZ, ITALIC, LANDSCAPE, LANGUAGE_LEVEL,
LIGHT, MEDIUM, NARROW, NCAR, OBLIQUE, OPTIMIZE, ORDERED,
OUTPUT, PALATINO, PIXELS, PLOT_TO, PLOTTER_ON_OFF, POLYFILL,
PORTRAIT, PRE_DEPTH, PRE_XSIZE, PRE_Y SIZE, PREVIEW, PRINT_FILE,
PSEUDO_COLOR, RESET_STRING, RESOLUTION, RETAIN,
SCALE_FACTOR, SCHOOLBOOK, SET_CHARACTER_SIZE,
SET_COLORMAP, SET_COLORS, SET_FONT, SET_GRAPHICS FUNCTION,
SET_RESOLUTION, SET_STRING, SET_TRANSLATION, SET_WRITE_MASK,
STATIC_COLOR, STATIC_GRAY, SYMBOL, TEK4014, TEK4100, TEXT,
THRESHOLD, TIMES, TRANSLATION, TRUE_COLOR, TT_FONT, TTY,
USER_FONT, VT240, VT241, VT340, VT341, WINDOW_STATE, XOFFSET,
XON_XOFF, XSIZE, YOFFSET, YSIZE, ZAPFCHANCERY, ZAPFDINGBATS,
Z_BUFFERING

Examples

DEVICE

The following example retains the name of the current graphics device, sets plotting
to the PostScript device, makes a PostScript file, then resets plotting to the original
device:

; The NAME field of the ID systemvariabl e contains the nane of the
; current plotting device.
mydevi ce = ! D. NAME

; Set plotting to PostScript:
SET_PLOT, 'PS

; Use DEVICE to set sone PostScript device options:
DEVI CE, FILENAME=' nyfile.ps', /LANDSCAPE

Make a sinmple plot to the PostScript file:
PLOT, FI NDGEN(10)

; Close the PostScript file:
DEVI CE, / CLOSE

IDL Reference Guide

Chapter 3: Procedures and Functions

Return plotting to the original device:
SET_PLOT, nydevice

Version History

5901

Origind

Introduced

6.1

Added CMYK keyword

Pre6.1

Deprecated DEPTH and FONT keywords

For more information on deprecated features, see Appendix J, “ Obsolete Features’.

IDL Reference Guide

DEVICE

592 Chapter 3: Procedures and Functions
DFPMIN

The DFPMIN procedure minimizes a user-written function Func of two or more
independent variables using the Broyden-Fletcher-Gol df arb-Shanno variant of the
Davidon-Fletcher-Powell method, using its gradient as calculated by a user-written
function Dfunc.

DFPMIN is based on the routine df pni n described in section 10.7 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

DFPMIN, X, Gtol, Fmin, Func, Dfunc [, /DOUBLE] [, EPS=valug]
[, ITER=variable] [, ITMAX=value] [, STEPMAX=valug] [, TOL X=valug]

Arguments

X
Oninput, X is an n-element vector specifying the starting point. On output, it is
replaced with the location of the minimum.

Note
If DFPMIN is complex then only the real part is used for the computation.

Gtol
An input value specifying the convergence requirement on zeroing the gradient.
Fmin

On output, Fmin contains the value at the minimum-point X of the user-supplied
function specified by Func.

Func
A scalar string specifying the name of a user-supplied IDL function of two or more

independent variables to be minimized. This function must accept a vector argument
Xand return a scalar result.

DFPMIN IDL Reference Guide

Chapter 3: Procedures and Functions 593

For example, suppose we wish to find the minimum value of the function
y= (=3 + (-2
To evaluate this expression, we define an IDL function named MINIMUM:

FUNCTI ON m ni mum X
RETURN, (X[0] - 3.0)74 + (X[1] - 2.0)72
END

Dfunc

A scalar string specifying the name of a user-supplied IDL function that calculates
the gradient of the function specified by Func. This function must accept a vector
argument X and return a vector result.

For example, the gradient of the above function is defined by the partial derivatives:

Y = ogx-3° X = ox, -
b = A00=3% 5 = 204-2)

We can write afunction GRAD to express these relationshipsin the IDL language:

FUNCTI ON grad, X

RETURN, [4.0*(X[0] - 3.0)73, 2.0%(X[1] - 2.0)]
END

Keywords
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

EPS
Use this keyword to specify a number close to the machine precision. For single-

precision calculations, the default value is 3.0 x 10°8. For double-precision
calculations, the default value is 3.0 x 10716,

IDL Reference Guide DFPMIN

594 Chapter 3: Procedures and Functions

ITER

Use this keyword to specify a named variable which returns the number of iterations
performed.

ITMAX

Use this keyword to specify the maximum number of iterations allowed. The default
valueis 200.

STEPMAX

Use this keyword to specify the scaled maximum step length allowed in line searches.
The default value is 100.0

TOLX

Use this keyword to specify the convergence criterion on X values. The default value
is4 x EPS.

Examples
To minimize the function MINIMUM:
PRO exanpl e_df pm n

Make an initial guess (the algorithnmis starting point):
X =11.0, 1.0]

Set the convergence requirenment on the gradient:
Gol = 1.0e-7

Find the mnimzing val ue:
DFPM N, X, Gol, Fmn, "mninn, 'grad

Print the mninizing val ue:
PRI NT, X

END
FUNCTI ON mi ni mum X
RETURN, (X[0] - 3.0)" + (X[1] - 2.0)"2
END
FUNCTI ON grad, X

RETURN, [4.0%(X[0] - 3.0)73, 2.0%(X[1] - 2.0)]
END

DFPMIN IDL Reference Guide

Chapter 3: Procedures and Functions 595
IDL prints:
3.00175 2.00000
Version History
4.0 Introduced
See Also
AMOEBA, POWELL, SIMPLEX
IDL Reference Guide DFPMIN

596 Chapter 3: Procedures and Functions

DIAG_MATRIX

TheDIAG_MATRIX function constructs adiagonal matrix from an input vector, or if
given amatrix, then DIAG_MATRIX will extract adiagonal vector.

Syntax
Result = DIAG_MATRIX(AT], Diag])
Return Value

« If given aninput vector with n values, the result is an n-by-n array of the same
type. The DIAG_MATRIX function may also be used to construct subdiagonal
or superdiagonal arrays.

e If given an input n-by-m array, the result is a vector with MIN(n,m) elements
containing the diagonal elements. The DIAG_MATRIX function may also be
used to extract subdiagonals or superdiagonals.

Arguments

A

Either an n-element input vector to convert to a diagonal matrix, or a n-by-minput
array to extract adiagonal. A may be any numeric type.

Diag

An optional argument that specifies the subdiagonal (Diag < 0) or superdiagonal
(Diag > 0) to fill or extract. The default is Diag=0 which puts or extracts the values
aong the diagonal. If A isavector with the m elements, then the result is an n-by-n
array, where n = m+ ABS(Diag). If Aisan array, then the result is avector whose
length depends upon the number of elements remaining along the subdiagonal or
superdiagonal .

DIAG_MATRIX IDL Reference Guide

Chapter 3: Procedures and Functions

Tip

597

The Diag argument may be used to easily construct tridiagonal arrays. For example,
the expression,

DI AG MATRI X(VL, -1) + DI AG MATRI X(V) + DI AG MATRI X(WU, 1)

will create an n-by-n array, where VL is an (n - 1)-element vector containing the
subdiagonal values, V is an n-element vector containing the diagonal values, and
VU isan (n - 1)-element vector containing the superdiagonal values.

Keywords

None.

Examples

Create atridiagonal matrix and extract the diagonal using the following program:

PRO ExDi aghat ri x

; Convert three input vectors to a tridiagonal matrix:
diag = [1, -2, 3, -4]

sub = [5, 10, 15]

super = [3, 6, 9]

array = DI AG MATRI X(diag) + $

DI AG_MATRI X(super, 1) + DI AG MATRI X(sub, -1)

PRI NT, ' DI AG_ MATRI X array:"'

PRI NT, array

; Extract the diagonal:

PRI NT, ' DI AG_MATRI X di agonal :'
PRI NT, DI AG_MATRI X(array)

END

When this program is compiled and run, IDL prints:

DI AG_MATRI X array:

1 3 0 0
5 -2 6 0
0 10 3 9
0 0 15 -4
DI AG_MATRI X di agonal :

1 -2 3 -4

IDL Reference Guide

DIAG_MATRIX

598 Chapter 3: Procedures and Functions

Version History

5.6 I ntroduced

See Also

IDENTITY, MATRIX_MULTIPLY, “Manipulating Arrays’ in Chapter 15 of the
Building IDL Applications manual

DIAG_MATRIX IDL Reference Guide

Chapter 3: Procedures and Functions 599

DIALOG_MESSAGE

The DIALOG_MESSAGE function creates amodal (blocking) dialog box that can
be used to display information to the user. The dialog must be dismissed, by clicking
on one of its option buttons, before execution of the widget program can continue.

This function differs from widgets in a number of ways. The DIALOG_MESSAGE
dialog does not exist as part of awidget tree, has no children, does not exist in an
unrealized state, and generates no events. Instead, the dialog is displayed whenever
this function is called. While the DIALOG_MESSAGE diaog is displayed, widget
activity is limited because the dialog is modal. The function does not return to its
caller until the user selects one of the dialog’s buttons. Once a button has been
selected, the dialog disappears.

There are four basic dialogs that can be displayed. The default typeis “Warning”.
Other types can be selected by setting one of the keywords described below. Each
dialog type displays different buttons. Additionally any dialog can be made to show a
“Cancel” button by setting the CANCEL keyword. The four types of dialogs are
described in the table below:

Dialog Type Default Buttons
Error OK
Warning OK
Question Yes, No
Information OK

Table 3-38: Types of DIALOG_MESSAGE Dialogs

Syntax
Result = DIALOG_MESSAGE(Message Text [, /CANCEL] [, /CENTER]
[,/ DEFAULT_CANCEL |,/DEFAULT_NO] [, DIALOG_PARENT=widget_id]
[, DISPLAY_NAME-=string] [, /ERROR |, /INFORMATION |, /QUESTION]
[, RESOURCE_NAME=string] [, TITLE=string])
Return Value

DIALOG_MESSAGE returns atext string containing the text of the button selected
by the user. Possible returned values are “ Yes’, “No”, “OK”, and “Cancel”.

IDL Reference Guide DIALOG_MESSAGE

600 Chapter 3: Procedures and Functions

Arguments

Message Text

A scalar string or string array that contains the text of the message to be displayed. If
this argument is set to an array of strings, each array element is displayed asa
separate line of text.

Note
You can use language catal ogs to internationalize this value with stringsin

particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

Keywords

CANCEL
Set this keyword to add a “ Cancel” button to the dialog.
CENTER

Set this keyword to center the dialog on the screen.

Note
This keyword isignored on Microsoft Windows platforms because the dialog is
aways automatically centered.

DEFAULT_CANCEL

Set this keyword to make the “Cancel” button the default selection for thedialog. The
default selection is the button that is selected when the user presses the default
keystroke (usually Space or Return depending on the platform). Setting
DEFAULT_CANCEL implies that the CANCEL keyword is also set.

DEFAULT_NO

Set this keyword to make the “No” button the default selection for “ Question”
dialogs. Normally, the default is“Yes'.

DIALOG_MESSAGE IDL Reference Guide

Chapter 3: Procedures and Functions 601

DIALOG_PARENT

Set this keyword to the widget ID of awidget over which the message dialog should
be positioned. When displayed, the DIALOG_MESSAGE dialog will be positioned
over the specified widget. Dialogs are often related to a non-dialog widget tree. The
ID of the widget in that tree to which the dialog is most closely related should be
specified.

DISPLAY_NAME

Set this keyword equal to a string indicating the name of the X Windows display on
which the dialog is to appear. This keyword isignored if the DIALOG_PARENT
keyword is specified. This keyword is also ignored on Microsoft Windows platforms.

ERROR
Set this keyword to create an “Error” dialog. The default dialog typeis“Warning”.
INFORMATION

Set this keyword to create an “Information” dialog. The default dialog typeis
“Warning”.

QUESTION
Set this keyword to create a“ Question” dialog. The default dialog type is“Warning”.
RESOURCE_NAME

A string containing an X Window System resource name to be applied to the dialog.
See “RESOURCE_NAME" on page 2549 for a complete discussion of this keyword.

TITLE

Set thiskeyword to ascalar string that containsthe text of atitleto be displayed inthe
dialog frame. If this keyword is not specified, the dialog hasthe dialog type asitstitle
as shown in the table under DIALOG_MESSAGE.

Note
You can use language catalogs to internationalize this value with stringsin
particular languages. For more information, see Chapter 19, “Using Language
Catalogs’ in the Building IDL Applications manual.

IDL Reference Guide DIALOG_MESSAGE

602

Version History

Chapter 3: Procedures and Functions

5.0 I ntroduced
6.2 Added CENTER keyword
See Also

XDISPLAYFILE

DIALOG_MESSAGE

IDL Reference Guide

Chapter 3: Procedures and Functions 603

DIALOG_PICKFILE

The DIALOG_PICKFILE function allows you to interactively select afile, or
multiple files, using the platform’s own native graphical file selection dialog. You
can also enter the name of afile that does not exist (see the description of the WRITE
keyword). When the DIRECTORY keyword is set, you can select a directory (or
create and select a directory on Windows) using the Browse for Folder dialog.

Entering File Names Manually

Oncethefile selection dialog has been displayed, you can enter afile name manually
by typing the name in the File name field (Windows) or Selection field (Motif).

Windows

On Microsoft Windows systems, file names can be entered as they appear in the
Windows Explorer, including spaces. If the MULTIPLE_FILES keyword is set, each
file name should be surrounded by double quotes, and the file names should be
separated by spaces. For example, to select two filesnamed Fi rst Fil e. t xt and
Second Fil e. t xt, you would enter the following in the File name field:

"First File.txt" "Second File.txt"
Motif

To enter afile name that includes a space character on aMotif system, escape the
space character with the “\” character. Similarly, if the file name includes the “\”
character, escape the literal “\” with another “\" character. If the MULTIPLE_FILES
keyword is set, file names should be separated by spaces. For example, to select two
filesnamed Fi rst Fil e.txt and Back\ sl ash Fil e. t xt, you would enter the
following in the Selection field:

First\ File.txt Back\\slash\ File.txt
Syntax

Result = DIALOG_PICKFILE([, DEFAULT_EXTENSION=string]
[, IDIRECTORY] [, DIALOG_PARENT=widget_id]
[, DISPLAY _NAME=string] [, FILE=string] [, FILTER=string/string array]
[, IFIX_FILTER] [, GET_PATH=variable] [, GROUP=widget_id]
[, MULTIPLE_FILES] [, /MUST_EXIST] [, /OVERWRITE_PROMPT]
[, PATH=string] [, /READ |, /WRITE] [, RESOURCE_NAME=string]
[, TITLE=string])

IDL Reference Guide DIALOG_PICKFILE

604 Chapter 3: Procedures and Functions

Return Value

When the DIRECTORY keyword is not specified, DIALOG_PICKFILE returns a
string array that contains the full path name of the selected file or files. If no fileis
selected, DIALOG_PICKFILE returnsanull string.

When the DIRECTORY keyword is specified, DIALOG_PICKFILE returns astring
array that contains the full path of the selected directory.

Keywords
DEFAULT_EXTENSION

Set this keyword to a scalar string representing the default extension to be appended
onto the returned file name or names. If the returned file name already has an
extension, then the value set for this keyword is not appended. The string value set
for this keyword should not include a period (.).

Note
This keyword only applies to file names typed into the dialog. This keyword does
not apply to files selected within the dialog.

DIALOG_PARENT
Set this keyword to the widget ID of awidget to be used as the parent of this dialog.
DIRECTORY

Set this keyword to display only the existing directories in the directory specified by
the PATH keyword. If apath is not specified, setting this keyword shows directories
in the current directory. The Browse for Folder dialog is opened to the directory
specified by the path definition. Individual files are not displayed. The return value
contains the path of the directory selected, or directory created and selected by the
user.

DISPLAY_NAME

Set this keyword equal to a string that specifies the name of the X Windows displ